查看“三立方数和”的源代码
←
三立方数和
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{unsolved|数学|模9不同余4或5的整数是否都可以写成三整数立方之和?}} [[File:Sum_of_3_cubes.svg|thumb|250px|整数''x''、''y''与''z''满足{{nowrap|1=''x''³ + ''y''³ + ''z''³ = ''n''}}的半对数图线,其中{{nowrap|''n'' ∈ [0, 100]}}。绿色条带代表已证明无解的整数。]] '''三立方数和问题'''({{lang-en|sums of three cubes}})是指[[丢番图方程]]<math>x^3+y^3+z^3=n</math>是否存在整数解的问题。由于[[立方数]]模9同余0、1或-1,三立方数和模9不可能同余4或5,因而这是整数解存在的一个[[必要条件]]。然而,对于该条件是否同时为[[充分条件]]目前仍未有定论。 == 小整数例 == <math>n=0</math>时,若存在非平凡的三立方解,则[[费马大定理]]找到反例。此时三个立方数中必有两个同号,经移项,就会出现两正整数立方和等于另一正整数立方的情况。由于[[欧拉]]早已证明幂次为3的费马大定理{{r|euler}},在<math>n=0</math>时的三立方和只有如下平凡解: :<math>a^3 + (-a)^3 + 0^3 = 0.</math> <math>n=1,2</math>时,存在如下解系,有无数解: :<math>(9b^4)^3+(3b-9b^4)^3+(1-9b^3)^3=1</math> 以及, :<math>(1+6c^3)^3+(1-6c^3)^3+(-6c^2)^3=2.</math> 上述表示经缩放可得,任意立方数或立方数的二倍都有三立方和{{r|w08|m36}}。除上述表示外,<math>n=1</math>也有其他三立方和解系{{r|ad}},<math>n=2</math>有如下著名解{{r|ad|hlr}}: :<math>1214928^3 + 3480205^3 + (-3528875)^3 = 2, </math> :<math>37404275617^3 + (-25282289375)^3 + (-33071554596)^3 = 2,</math> :<math>3737830626090^3 + 1490220318001^3 + (-3815176160999)^3 = 2.</math> 然而,已经证明只在1和2处存在能被[[二次多项式]]参数化的解析表示{{r|m42}}。即便在<math>n=3</math>处,也没有参数化解系。{{le|路易斯·J·莫德尔|Louis J. Mordell}}在1953年写道,除了其小整数解,“我对其一无所知”,即: :<math>1^3+1^3+1^3=4^3+4^3+(-5)^3=3</math> “我”也不知道为什么这三个数都满足模9同余{{r|m53}}。{{as of|2019|9}},上述两式仍然是<math>n=3</math>仅有的已知解{{r|lue}}。 == 计算结果 == 1955年起,莫德尔({{Lang|en|Mordell}})等许多学者都尝试过使用计算机寻找该问题的解。{{r|mw|gls|hlr|cv|b|e|bpty|ej|h}}对于1000以内的正整数<math>n</math>,埃尔森汉斯({{Lang|en|Elsenhans}})与雅内尔({{Lang|en|Jahnel}})于2009年使用{{le|诺姆·埃尔奇斯|Noam Elkies}}提出的基于[[格规约]]的方法{{r|e}}找到了<math>\max(|x|,|y|,|z|)<10^{14}</math>范围内的所有解。2016年,于斯曼({{Lang|en|Huisman}})使用同样的方法将搜索上界提升至<math>\max(|x|,|y|,|z|)<10^{15}</math>。到此时为止,<math>n<100</math>的正整数中,33与42以外所有模9不同余4或5的<math>n</math>都找到了至少一组整数解。{{r|h}} 2019年,[[安德鲁·布克]]({{Lang|en|Andrew Booker}})采用一种新方法发现了<math>n=33</math>的一组解:{{r|arb}} :<math>33=8866128975287528^3+(-8778405442862239)^3+(-2736111468807040)^3</math> 此时,他在<math>\min(|x|,|y|,|z|)<10^{16}</math>的范围里尚没有找到<math>n=42</math>的解。{{r|arb}} 随后在2019年9月,布克和[[安德鲁·萨瑟兰]]({{Lang|en|Andrew Sutherland}})最终敲定了42的一个解,并在MIT数学系的网站上贴了出来{{NoteTag|流行文化中,42被称[[生命、宇宙以及任何事情的终极答案]],萨瑟兰在页面的标题提到了这个典故:[http://math.mit.edu/~drew/ Life, The Universe, and Everything]}}: :<math>42=(-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3</math> 这个解的获得在Charity Engine全球网络({{Lang|en|Charity Engine's global grid}})上耗费了130万机时。 至此所有100以内的数都找到了解。{{as of|2019|9}},未能求解最小整数是<math>n=114</math>{{r|lue}},如果有解的話,<math>(|x|,|y|,|z|)</math>至少有一數大於[[100000000000]]。 仅剩的未解決的在[[1000]]以內的整数是[[114]]、[[390]]、[[579]]、627、633、732、921和975,一共有8個。 == 注释 == {{NoteFoot}} == 参考文献 == {{reflist|refs= <ref name=ad>{{citation | last1 = Avagyan | first1 = Armen | last2 = Dallakyan | first2 = Gurgen | arxiv = 1802.06776 | title = A new method in the problem of three cubes | year = 2018| doi = 10.13189/ujcmj.2017.050301 | doi-broken-date = 2019-08-16 }}</ref> <ref name=arb>{{citation|url=https://people.maths.bris.ac.uk/~maarb/papers/cubesv1.pdf|first=Andrew R.|last=Booker|title=Cracking the problem with 33|publisher=University of Bristol|date=2019}}</ref> <ref name=b>{{citation | last = Bremner | first = Andrew | contribution = On sums of three cubes | mr = 1353923 | pages = 87–91 | publisher = American Mathematical Society | location = Providence, Rhode Island | series = CMS Conference Proceedings | title = Number theory (Halifax, NS, 1994) | volume = 15 | year = 1995}}</ref> <ref name=bpty>{{citation | last1 = Beck | first1 = Michael | last2 = Pine | first2 = Eric | last3 = Tarrant | first3 = Wayne | last4 = Yarbrough Jensen | first4 = Kim | doi = 10.1090/S0025-5718-07-01947-3 | issue = 259 | journal = Mathematics of Computation | mr = 2299795 | pages = 1683–1690 | title = New integer representations as the sum of three cubes | volume = 76 | year = 2007}}</ref> <ref name=cv>{{citation | last1 = Conn | first1 = W. | last2 = Vaserstein | first2 = L. N. | contribution = On sums of three integral cubes | doi = 10.1090/conm/166/01628 | mr = 1284068 | pages = 285–294 | publisher = American Mathematical Society | location = Providence, Rhode Island | series = Contemporary Mathematics | title = The Rademacher legacy to mathematics (University Park, PA, 1992) | volume = 166 | year = 1994}}</ref> <ref name=e>{{citation | last = Elkies | first = Noam D. | authorlink = Noam Elkies | contribution = Rational points near curves and small nonzero <math>|x^3-y^2|</math> via lattice reduction | doi = 10.1007/10722028_2 | mr = 1850598 | pages = 33–63 | publisher = Springer, Berlin | series = Lecture Notes in Computer Science | title = Algorithmic number theory (Leiden, 2000) | volume = 1838 | year = 2000}}</ref> <ref name=ej>{{citation | last1 = Elsenhans | first1 = Andreas-Stephan | last2 = Jahnel | first2 = Jörg | doi = 10.1090/S0025-5718-08-02168-6 | issue = 266 | journal = Mathematics of Computation | mr = 2476583 | pages = 1227–1230 | title = New sums of three cubes | volume = 78 | year = 2009}}</ref> <ref name=euler>{{citation | last = Machis | first = Yu. Yu. | doi = 10.1134/S0001434607090088 | issue = 3 | journal = [[Mathematical Notes]] | mr = 2364600 | pages = 352–356 | title = On Euler's hypothetical proof | volume = 82 | year = 2007}}</ref> <ref name=gls>{{citation | last1 = Gardiner | first1 = V. L. | last2 = Lazarus | first2 = R. B. | last3 = Stein | first3 = P. R. | doi = 10.2307/2003763 | journal = Mathematics of Computation | mr = 0175843 | pages = 408–413 | title = Solutions of the diophantine equation <math>x^{3}+y^{3}=z^{3}-d</math> | volume = 18 | year = 1964}}</ref> <ref name=hlr>{{citation | last1 = Heath-Brown | first1 = D. R. | author1-link = Roger Heath-Brown | last2 = Lioen | first2 = W. M. | last3 = te Riele | first3 = H. J. J. | author3-link = Herman te Riele | doi = 10.2307/2152950 | issue = 203 | journal = Mathematics of Computation | mr = 1202610 | pages = 235–244 | title = On solving the Diophantine equation <math>x^3+y^3+z^3=k</math> on a vector computer | volume = 61 | year = 1993}}</ref> <ref name=h>{{citation | last = Huisman | first = Sander G. | arxiv = 1604.07746 | title = Newer sums of three cubes | year = 2016}}</ref> <ref name=lue>{{citation | title = 42 is the answer to the question 'what is (-80538738812075974)<sup>3</sup> + 80435758145817515<sup>3</sup> + 12602123297335631<sup>3</sup>?' | work = The Aperiodical | first = Robin | last = Houston | date = September 6, 2019 | url = https://aperiodical.com/2019/09/42-is-the-answer-to-the-question-what-is-80538738812075974³-80435758145817515³-12602123297335631³/}}</ref> <ref name=m36>{{citation | last = Mahler | first = Kurt | authorlink = Kurt Mahler | doi = 10.1112/jlms/s1-11.2.136 | issue = 2 | journal = [[Journal of the London Mathematical Society]] | mr = 1574761 | pages = 136–138 | title = Note on Hypothesis K of Hardy and Littlewood | volume = 11 | year = 1936}}</ref> <ref name=m42>{{citation | last = Mordell | first = L. J. | authorlink = Louis J. Mordell | doi = 10.1112/jlms/s1-17.3.139 | journal = [[Journal of the London Mathematical Society]] | mr = 0007761 | pages = 139–144 | series = Second Series | title = On sums of three cubes | volume = 17 | issue = 3 | year = 1942}}</ref> <ref name=m53>{{citation | last = Mordell | first = L. J. | authorlink = Louis J. Mordell | doi = 10.1112/jlms/s1-28.4.500 | journal = [[Journal of the London Mathematical Society]] | mr = 0056619 | pages = 500–510 | series = Second Series | title = On the integer solutions of the equation <math>x^2+y^2+z^2+2xyz=n</math> | volume = 28 | year = 1953}}</ref> <ref name=mw>{{citation | last1 = Miller | first1 = J. C. P. | last2 = Woollett | first2 = M. F. C. | doi = 10.1112/jlms/s1-30.1.101 | journal = Journal of the London Mathematical Society | mr = 0067916 | pages = 101–110 | series = Second Series | title = Solutions of the Diophantine equation <math>x^3+y^3+z^3=k</math> | volume = 30 | year = 1955}}</ref> <ref name=w08>{{citation | last = Verebrusov | first = A. S. | issue = 4 | journal = [[Matematicheskii Sbornik]] | language = ru | pages = 622–624 | title = Объ уравненiи {{math|1=''x''<sup>3</sup> + ''y''<sup>3</sup> + ''z''<sup>3</sup> = 2''u''<sup>3</sup>}} | trans-title = On the equation <math>x^3+y^3+z^3=2u^3</math> | url = http://mi.mathnet.ru/msb6615 | volume = 26 | year = 1908 | jfm = 39.0259.02}}</ref> }} [[Category:丢番图方程]] [[Category:数学中未解决的问题]]
本页使用的模板:
Template:As of
(
查看源代码
)
Template:Lang
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:Le
(
查看源代码
)
Template:NoteFoot
(
查看源代码
)
Template:NoteTag
(
查看源代码
)
Template:Nowrap
(
查看源代码
)
Template:R
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Unsolved
(
查看源代码
)
返回
三立方数和
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息