查看“二次曲面”的源代码
←
二次曲面
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Eccentricity.svg|链接=https://en.wikipedia.org/wiki/File:Eccentricity.svg|缩略图|285x285像素|有固定[[焦点 (几何)]] ''F'' 和準線的<span style="color:red;">橢圓形 (''e'' = 1/2)</span>,<span style="color:#00cc00;">拋物線(''e'' = 1)</span> 和 <span style="color:blue;">雙曲線(''e'' = 2)</span>。]] '''二次曲面'''(Quadrics)指任何''n''維的超[[曲面]],其定義為多元[[二次方程]]的解的軌跡。 在坐标<math>\{x_0, x_1, x_2, \ldots, x_D\}</math>,二次曲面的定義為代數方程<ref name="geom"> [http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node61.html], ''Quadrics'' in ''Geometry Formulas and Facts'' by Silvio Levy, excerpted from 30th Edition of the CRC Standard Mathematical Tables and Formulas (CRC Press).</ref> : :<math> \sum_{i,j=0}^D Q_{i,j} x_i x_j + \sum_{i=0}^D P_i x_i + R = 0 </math>。 上式亦可以用[[矩陣乘法]]和[[向量]]的[[內積]]等概念,寫成以下形式: :<math>\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ \end{pmatrix}; </math> <math> A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \\ \end{pmatrix}; </math> <math> \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} </math> :<math>\langle A\mathbf{x},\mathbf{x}\rangle+\langle\mathbf{b},\mathbf{x}\rangle+c=0</math> 二次曲面是[[代數簇]]的一種。 ==欧几里得空间== :{| class="wikitable" ! colspan="3" style="background-color: white;" |未退化的一般实二次曲面 |- |[[橢球]]面 |<math>{x^2 \over a^2} + {y^2 \over b^2} + {z^2 \over c^2} = 1 \,</math> |[[File:Ellipsoid_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Ellipsoid_Quadric.png|166x166像素]] |- |橢圓[[拋物面]] |<math>{x^2 \over a^2} + {y^2 \over b^2} - z = 0 \,</math> |[[File:Paraboloid_Quadric.Png|链接=https://en.wikipedia.org/wiki/File:Paraboloid_Quadric.Png|166x166像素]] |- |雙曲[[拋物面]] |<math>{x^2 \over a^2} - {y^2 \over b^2} - z = 0 \,</math> |[[File:Hyperbolic_Paraboloid_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Hyperbolic_Paraboloid_Quadric.png|166x166像素]] |- |單葉[[雙曲面]] |<math>{x^2 \over a^2} + {y^2 \over b^2} - {z^2 \over c^2} = 1 \,</math> |[[File:Hyperboloid_Of_One_Sheet_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Hyperboloid_Of_One_Sheet_Quadric.png|163x163像素]] |- |双叶[[雙曲面|双曲面]] |<math>{x^2 \over a^2} + {y^2 \over b^2} - {z^2 \over c^2} = - 1 \,</math> |[[File:Hyperboloid_Of_Two_Sheets_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Hyperboloid_Of_Two_Sheets_Quadric.png|163x163像素]] |- ! colspan="3" style="background-color: white;" |特殊的二次曲面 |- |[[類球面]](一种特殊的[[橢球]]面) |<math>{x^2 \over a^2} + {y^2 \over a^2} + {z^2 \over b^2} = 1 \,</math> |[[File:Oblate_Spheroid_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Oblate_Spheroid_Quadric.png|83x83像素]][[File:Prolate_Spheroid_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Prolate_Spheroid_Quadric.png|83x83像素]] |- |[[球面]](一种特殊的[[類球面]]) |<math>{x^2 \over a^2} + {y^2 \over a^2} + {z^2 \over a^2} = 1 \,</math> |[[File:Sphere_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Sphere_Quadric.png|166x166像素]] |- |圓[[拋物面]](一种特殊的橢圓[[拋物面]]) |<math>{x^2 \over a^2} + {y^2 \over a^2} - z = 0 \,</math> |[[File:Circular_Paraboloid_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Circular_Paraboloid_Quadric.png|166x166像素]] |- |单叶[[雙曲面|双曲面]](一种特殊的單葉[[雙曲面]]) |<math>{x^2 \over a^2} + {y^2 \over a^2} - {z^2 \over b^2} = 1 \,</math> |[[File:Circular_Hyperboloid_Of_One_Sheet_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Circular_Hyperboloid_Of_One_Sheet_Quadric.png|163x163像素]] |- |雙葉[[雙曲面]](一種特殊的雙葉[[雙曲面]]) |<math>{x^2 \over a^2} + {y^2 \over a^2} - {z^2 \over b^2} = -1 \,</math> |[[File:Circular_Hyperboloid_of_Two_Sheets_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Circular_Hyperboloid_of_Two_Sheets_Quadric.png|163x163像素]] |- ! colspan="3" style="background-color: white;" |退化的二次曲面 |- |椭圆锥面 |<math>{x^2 \over a^2} + {y^2 \over b^2} - {z^2 \over c^2} = 0 \,</math> |[[File:Elliptical_Cone_Quadric.Png|链接=https://en.wikipedia.org/wiki/File:Elliptical_Cone_Quadric.Png|166x166像素]] |- |[[錐面]] |<math>{x^2 \over a^2} + {y^2 \over a^2} - {z^2 \over b^2} = 0 \,</math> |[[File:Circular_Cone_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Circular_Cone_Quadric.png|166x166像素]] |- |橢圓[[柱面]] |<math>{x^2 \over a^2} + {y^2 \over b^2} = 1 \,</math> |[[File:Elliptic_Cylinder_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Elliptic_Cylinder_Quadric.png|166x166像素]] |- |圓[[柱面]](一种特殊的橢圓[[柱面]]) |<math>{x^2 \over a^2} + {y^2 \over a^2} = 1 \,</math> |[[File:Circular_Cylinder_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Circular_Cylinder_Quadric.png|166x166像素]] |- |雙曲[[柱面]] |<math>{x^2 \over a^2} - {y^2 \over b^2} = 1 \,</math> |[[File:Hyperbolic_Cylinder_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Hyperbolic_Cylinder_Quadric.png|166x166像素]] |- |拋物[[柱面]] |<math>x^2 + 2ay = 0 \,</math> |[[File:Parabolic_Cylinder_Quadric.png|链接=https://en.wikipedia.org/wiki/File:Parabolic_Cylinder_Quadric.png|166x166像素]] |} ==参考来源== <references /> == 外部链接 == *{{mathworld|urlname=Quadric|title=Quadric}} [[Category:曲面]] [[Category:二次曲面|*]] [[Category:解析几何|*]]
本页使用的模板:
Template:Mathworld
(
查看源代码
)
返回
二次曲面
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息