查看“佩尔数”的源代码
←
佩尔数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''佩尔数'''是一个自古以来就知道的整数数列,由[[递推关系]]定义,与[[斐波那契数]]类似。佩尔数呈指数增长,增长速率与[[白银比]]的幂成正比。它出现在[[2的算術平方根]]的近似值以及[[三角平方数]]的定义中,也出现在一些组合数学的问题中。 ==定义== 佩尔数由以下的[[递推关系]]定义: :<math>P_n=\begin{cases}0&\mbox{if }n=0;\\1&\mbox{if }n=1;\\2P_{n-1}+P_{n-2}&\mbox{otherwise.}\end{cases}</math> 也就是说,佩尔数的数列从0和1开始,以后每一个佩尔数都是前面的数的两倍加上再前面的数。最初几个佩尔数是: :[[0]], [[1]], [[2]], [[5]], [[12]], [[29]], [[70]], [[169]], 408, 985, 2378…… {{OEIS|id=A000129}}。 佩尔数也可以用通项公式来定义: :<math>P_n=\frac{(1+\sqrt2)^n-(1-\sqrt2)^n}{2\sqrt2}.</math> 对于较大的''n'',<math>\scriptstyle (1+\sqrt 2)^n</math>的项起主要作用,而<math>\scriptstyle (1-\sqrt 2)^n</math>的项则变得微乎其微。因此佩尔数大约与[[白银比]]<math>\scriptstyle (1+\sqrt 2)</math>的幂成正比。 第三种定义是以下的[[矩阵]]公式: :<math>\begin{pmatrix} P_{n+1} & P_n \\ P_n & P_{n-1} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}^n.</math> 从这些定义中,可以推出或证明许多恒等式;例如以下的恒等式,与斐波那契数的[[卡西尼恒等式]]类似: :<math>P_{n+1}P_{n-1}-P_n^2 = (-1)^n,</math> 这个恒等式是以上矩阵公式的直接结果(考虑矩阵的[[行列式]])。 ==2的算術平方根的近似值== 佩尔数出现在[[2的算術平方根]]的[[丢番图逼近|有理数近似值]]中。如果两个大的整数''x''和''y'' 是[[佩尔方程]]的解: :<math>\displaystyle x^2-2y^2=\pm 1,</math> 那么它们的比<math>\tfrac{x}{y}</math>就是<math>\scriptstyle\sqrt 2</math>的一个较精确的近似值。这种形式的近似值的数列是: :<math>1, \frac32, \frac75, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \dots</math> 其中每一个分数的分母是佩尔数,分子则是这个数与前一个佩尔数的和。也就是说,佩尔方程的解具有<math>\tfrac{P_{n-1}+P_n}{P_n}</math>的形式。<math>\sqrt 2\approx\frac{577}{408}</math>是这些近似值中的第八个,在公元前3或4世纪就已经为印度数学家所知。公元前5世纪的古希腊数学家也知道这个近似值的数列;他们把这个数列的分母和分子称为“边长和直径数”,分子也称为“有理对角线”或“有理直径”。 这些近似值可以从<math>\scriptstyle\sqrt 2</math>的[[连分数]]展开式推出: :<math>\sqrt 2 = 1 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{\ddots\,}}}}}.</math> 取这个展开式的有限个项,便可以产生<math>\scriptstyle\sqrt 2</math>的一个近似值,例如: :<math>\frac{577}{408} = 1 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2 + \cfrac{1}{2}}}}}}}.</math> ==素数和平方数== '''佩尔素数'''是既是佩尔数又是[[素数]]的数。最初几个佩尔素数是: :2, 5, 29, 5741, …… {{OEIS|id=A086383}}。 与斐波那契素数相似,仅当''n''本身是素数时<math>P_n</math>才有可能是素数。 唯一的既是佩尔数又是平方数、立方数或任意整数次方的数是0, 1, 以及169 = 13<sup>2</sup>。 然而,佩尔数与[[三角平方数]]有密切的关系。它们出现在以下佩尔数的恒等式中: :<math>\bigl((P_{k-1}+P_k)\cdot P_k\bigr)^2 = \frac{(P_{k-1}+P_k)^2\cdot\left((P_{k-1}+P_k)^2-(-1)^k\right)}{2}.</math> 等式的左面是[[平方数]],等式的右面是[[三角形数]],因此是三角平方数。 Santana和Diaz-Barrero在2006年证明了佩尔数与平方数之间的另外一个恒等式,并证明了从<math>P_1</math>到<math>P_{4n+1}</math>的所有佩尔数的和总是平方数: :<math>\sum_{i=0}^{4n+1} P_i = \left(\sum_{r=0}^n 2^r{2n+1\choose 2r}\right)^2 = (P_{2n}+P_{2n+1})^2.</math> 例如,从<math>P_1</math>到<math>P_5</math>的和是<math>0+1+2+5+12+29=49</math>,是<math>P_2+P_3=2+5=7</math>的平方。<math>P_{2n}+P_{2n+1}</math>就是这个和的平方根: :1, 7, 41, 239, 1393, 8119, 47321, …… {{OEIS|id=A002315}}。 ==勾股数== [[File:Pell right triangles.svg|thumb|300px|边长为整数的直角三角形,其直角边几乎相等,由佩尔数引出。]] 如果一个直角三角形的边长为''a''、''b''和''c''(必须满足[[勾股定理]]''a''<sup>2</sup>+''b''<sup>2</sup>=''c''<sup>2</sup>),那么(''a'',''b'',''c'')称为[[勾股数]]。Martin在1875年描述,佩尔数可以用来产生勾股数,其中''a''和''b''相差一个单位。这个勾股数具有以下形式: :<math>(2P_{n}P_{n+1}, P_{n+1}^2 - P_{n}^2, P_{n+1}^2 + P_{n}^2=P_{2n+1}).</math> 用这种方法产生的勾股数的序列是: :(4,3,5), (20,21,29), (120,119,169), (696,697,985), …… ==佩尔-卢卡斯数== '''佩尔-卢卡斯数'''由以下的递推关系定义: :<math>Q_n=\begin{cases}2&\mbox{if }n=0;\\2&\mbox{if }n=1;\\2Q_{n-1}+Q_{n-2}&\mbox{otherwise.}\end{cases}</math> 也就是说,数列中的最初两个数都是2,后面每一个数都是前一个数的两倍加上再前面的一个数。这个数列的最初几个项是{{OEIS|id=A002203}}:[[2]], [[2]], [[6]], [[14]], [[34]], [[82]], [[198]], [[478]]…… 佩尔-卢卡斯数的通项公式为: :<math>Q_n=(1+\sqrt 2)^n+(1-\sqrt 2)^n.</math> 这些数都是偶数,每一个数都是以上<math>\scriptstyle\sqrt 2</math>的近似值中的分子的两倍。 ==参考文献== <div class="references-small" style="-moz-column-count:2; column-count:2;"> *{{cite journal | author = Bicknell, Marjorie | title = A primer on the Pell sequence and related sequences | journal = [[Fibonacci Quarterly]] | volume = 13 | year = 1975 | issue = 4 | pages = 345–349 | id = {{MathSciNet | id = 0387173}}}} *{{cite journal | author = Cohn, J. H. E. | title = Perfect Pell powers | journal = [[Glasgow Mathematical Journal]] | volume = 38 | year = 1996 | issue = 1 | pages = 19–20 | id = {{MathSciNet | id = 1373953}}}} *{{cite journal | author = Dutka, Jacques | title = On square roots and their representations | journal = [[Archive for History of Exact Sciences]] | volume = 36 | issue = 1 | year = 1986 | pages = 21–39 | doi = 10.1007/BF00357439 | id = {{MathSciNet | id = 0863340}}}} *{{cite journal | author = Ercolano, Joseph | title = Matrix generators of Pell sequences | journal = [[Fibonacci Quarterly]] | volume = 17 | year = 1979 | issue = 1 | pages = 71–77 | id = {{MathSciNet | id = 0525602}}}} *{{cite journal | author = Filep, László | title = Pythagorean side and diagonal numbers | journal = [[Acta Mathematica Academiae Paedagogiace Nyíregyháziensis]] | volume = 15 | year = 1999 | pages = 1–7 | url = http://www.emis.de/journals/AMAPN/vol15/filep.pdf}} *{{cite journal | author = Horadam, A. F. | title = Pell identities | journal = [[Fibonacci Quarterly]] | volume = 9 | year = 1971 | issue = 3 | pages = 245–252, 263 | id = {{MathSciNet | id = 0308029}}}} *{{cite journal | author = Kilic, Emrah; Tasci, Dursun | title = The linear algebra of the Pell matrix | journal = [[Boletín de la Sociedad Matemática Mexicana]], Tercera Serie | volume = 11 | year = 2005 | issue = 2 | pages = 163–174 | id = {{MathSciNet | id = 2207722}}}} *{{cite journal | author = Knorr, Wilbur | authorlink = Wilbur Knorr | title = Archimedes and the measurement of the circle: A new interpretation | journal = [[Archive for History of Exact Sciences]] | volume = 15 | issue = 2 | year = 1976 | pages = 115–140 | doi = 10.1007/BF00348496 | id = {{MathSciNet | id = 0497462}}}} *{{cite journal | author = Knorr, Wilbur | authorlink = Wilbur Knorr | title = "Rational diameters" and the discovery of incommensurability | journal = [[American Mathematical Monthly]] | volume = 105 | issue = 5 | pages = 421–429 | year = 1998 | doi = 10.2307/3109803}} *{{cite journal | author = Knuth, Donald E. | authorlink = Donald Knuth | title = Leaper graphs | journal = [[The Mathematical Gazette]] | volume = 78 | year = 1994 | pages = 274–297 | id = {{arxiv | archive = math.CO | id = 9411240}} | doi = 10.2307/3620202}} *{{cite journal | author = Martin, Artemas | title = Rational right angled triangles nearly isosceles | journal = [[Annals of Mathematics|The Analyst]] | volume = 3 | issue = 2 | pages = 47–50 | year = 1875 | url = http://www.jstor.org/stable/2635906 | doi = 10.2307/2635906}} *{{cite conference | author = Pethő, A. | title = The Pell sequence contains only trivial perfect powers | booktitle = Sets, graphs, and numbers (Budapest, 1991) | publisher = Colloq. Math. Soc. János Bolyai, 60, North-Holland | date = 1992 | pages = 561–568 | id = {{MathSciNet | id = 1218218}}}} *{{cite journal | author = Ridenhour, J. R. | title = Ladder approximations of irrational numbers | journal = [[Mathematics Magazine]] | year = 1986 | volume = 59 | issue = 2 | pages = 95–105 | url = http://www.jstor.org/stable/2690427}} *{{cite journal |author=Santana, S. F.; Diaz-Barrero, J. L. |year=2006 |title=Some properties of sums involving Pell numbers |journal=[[Missouri Journal of Mathematical Sciences]] |volume=18 |issue=1 |url=http://www.math-cs.cmsu.edu/~mjms/2006.1/diazbar.pdf |deadurl=yes |archiveurl=https://web.archive.org/web/20070508133004/http://www.math-cs.cmsu.edu/~mjms/2006.1/diazbar.pdf |archivedate=2007-05-08 }} *{{cite journal | author = Sellers, James A. | title = Domino tilings and products of Fibonacci and Pell numbers | year = 2002 | journal = [[Journal of Integer Sequences]] | volume = 5 | url = http://www.emis.de/journals/JIS/VOL5/Sellers/sellers4.pdf | id = {{MathSciNet | id = 1919941}}}} *{{cite journal | author = Sesskin, Sam | title = A "converse" to Fermat's last theorem? | journal = [[Mathematics Magazine]] | volume = 35 | issue = 4 | year = 1962 | pages = 215–217 | url = http://links.jstor.org/sici?sici=0025-570X(196209)35%3A4%3C215%3AA%22TFLT%3E2.0.CO%3B2-6}} *{{cite journal | author = Thibaut, George | authorlink = George Thibaut | title = On the Súlvasútras | journal = [[Journal of the Royal Asiatic Society of Bengal]] | volume = 44 | pages = 227–275 | year = 1875}} *{{cite journal | author = Thompson, D'Arcy Wentworth | authorlink = D'Arcy Wentworth Thompson | title = III.—Excess and defect: or the little more and the little less | journal = [[Mind (journal)|Mind: New Series]] | year = 1929 | volume = 38 | issue = 149 | pages = 43–55 | url = http://www.jstor.org/stable/2249223}} *{{cite journal | author = Vedova, G. C. | title = Notes on Theon of Smyrna | journal = [[American Mathematical Monthly]] | year = 1951 | volume = 58 | issue = 10 | pages = 675–683 | doi = 10.2307/2307978}} </div> ==外部链接== *{{mathworld | title = Pell Number | urlname = PellNumber}} [[Category:整数数列|P]]
本页使用的模板:
Template:Cite conference
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Mathworld
(
查看源代码
)
Template:OEIS
(
查看源代码
)
返回
佩尔数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息