查看“基 (線性代數)”的源代码
←
基 (線性代數)
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Basis graph.svg|thumb|right|250px|在'''''R'''<sup>2</sup>''中标准基的图示。红蓝向量是这个基的元素。]] {{Linear algebra}} 在[[线性代数]]中,'''基'''(basis)(也称为'''基底''')是描述、刻画[[向量空间]]的基本工具。向量空间的基是它的一个特殊的[[子集]],基的元素称为'''基向量'''。向量空间中任意一个元素,都可以唯一地表示成基向量的[[线性组合]]。如果基中元素个数[[有限]],就称向量空间为有限维向量空间,将元素的个数称作向量空间的'''维数'''。 使用基底可以便利地描述向量空间。比如说,考察从一个向量空间<math>\mathrm{V}</math>射出的[[线性变换]]<math>f</math>,可以查看这个变换作用在向量空间的一组基<math>\mathfrak{B}</math>上的效果。掌握了<math>f( \mathfrak{B} )</math>,就等于掌握了<math>f</math>对<math>\mathrm{V}</math>中任意元素的效果。 不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。如果承认[[选择公理]],那么可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)是相等的。一组基里面的任意一部分向量都是[[线性无关]]的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能将它扩充为一组基。在[[内积向量空间]]中,可以定义[[正交]]的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至[[标准正交基]]。 == 定义 == 给定一个[[向量空间]]<math>\mathrm{V}</math>。<math>\mathrm{V}</math>的一组'''基'''<math>\mathfrak{B}</math>是指<math>\mathrm{V}</math>里面的可[[线性生成空间|线性生成]]<math>\mathrm{V}</math>的一个[[线性无关]]子集。<math>\mathfrak{B}</math>的元素称为'''基向量'''。 更详细来说,设<math>\mathfrak{B} = \{ e_1, e_2 , \cdots , e_n \}</math>是在[[域 (数学)|系数域]]<math>\mathbb{F}</math>(比如[[实数]]域<math>\mathbb{R}</math>或[[复数]]域<math>\mathbb{C}</math>)上的向量空间<math>\mathrm{V}</math>的有限子集。如果<math>\mathfrak{B}</math>满足下列条件: # 对任意<math>(\lambda_1, \lambda_2 , \cdots , \lambda_n) \in \mathbb{F}^n</math>,如果<math>\lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_n e_n = 0</math>,则必然<math>\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0</math>; # 对任意<math>v \in \mathrm{V}</math>,可以选择<math>(\lambda_1, \lambda_2 , \cdots , \lambda_n) \in \mathbb{F}^n</math>,使得<math>v = \lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_n e_n</math>。 就说<math>\mathfrak{B}</math>是向量空间<math>\mathrm{V}</math>的一组'''基'''。第二个条件中,将一个向量<math>v \in \mathrm{V}</math>表示成<math>\lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_n e_n</math>的形式,称为向量<math>v</math>在基底<math>\mathfrak{B}</math>下的分解。<math>(\lambda_1, \lambda_2 , \cdots , \lambda_n) </math>称为向量<math>v</math>在基底<math>\mathfrak{B}</math>下的分量表示。 有[[有限集合|有限]]基的向量空间叫做有限维的空间。要处理无限维的空间,必须把上述基的定义推广为包括无限的基集合。如果向量空间<math>\mathrm{V}</math>的一个子集 (有限或无限)<math>\mathfrak{B}</math>满足: * 它的所有有限子集<math>\mathfrak{B}' \subset \mathfrak{B}</math>满足上面的第一个条件(即线性无关); * 对任意<math>v \in \mathrm{V}</math>,可以选择<math>(\lambda_1, \lambda_2 , \cdots , \lambda_n) \in \mathbb{F}^n</math>,以及<math>e_1, e_2 , \cdots , e_n \in \mathfrak{B}</math>,使得<math>v = \lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_n e_n</math>。 就称<math>\mathfrak{B}</math>是无限维空间<math>\mathrm{V}</math>的一组基。 没有装备[[拓扑学|拓扑结构]]的[[向量空间]]的结构不足以谈论向量的[[无限和]],因此上述定义只包括对有限个向量求和。 == 性质 == 设<math>\mathfrak{B}</math>是向量空间<math>\mathrm{V}</math>的子集。则<math>\mathfrak{B}</math>是基,[[当且仅当]]满足了下列任一条件: * <math>\mathrm{V}</math>是<math>\mathfrak{B}</math>的极小生成集,就是说只有<math>\mathfrak{B}</math>能生成<math>\mathrm{V}</math>,而它的任何真子集都不能生成全部的向量空间。 * <math>\mathfrak{B}</math>是<math>\mathrm{V}</math>中线性无关向量的极大集合,就是说<math>\mathfrak{B}</math>在<math>\mathrm{V}</math>中是线性无关集合,而且<math>\mathrm{V}</math>中没有其他线性无关集合包含它作为真子集。 * <math>\mathrm{V}</math>中所有的向量都可以按唯一的方式表达为<math>\mathfrak{B}</math>中向量的线性组合。如果基是有序的,则在这个线性组合中的系数提供了这个向量关于这个基的坐标。 如果承认[[良序定理]]或任何[[选择公理]]的等价物,那么作为推论,可以证明任何的向量空间都拥有一组基。(证明:良序排序这个向量空间的元素。建立不线性依赖于前面元素的所有元素的子集。它就是基)。反过来也是真的。一个向量空间的所有基都拥有同样的[[基数|势]](元素个数),叫做这个向量空间的[[维度]]。这个结果叫做维度定理,它要求系统承认严格弱形式的选择公理即[[超滤子引理]]。 === 例子 === *考虑所有坐标 (''a'', ''b'')的向量空间'''R'''<sup>2</sup>,这里的''a''和''b''都是实数。则非常自然和简单的基就是向量'''e'''<sub>1</sub> = (1,0)和'''e'''<sub>2</sub> = (0,1):假设''v'' = (''a'', ''b'')是'''R'''<sup>2</sup>中的向量,则''v'' = ''a'' (1,0) + ''b''(0,1)。而任何两个线性无关向量如 (1,1)和(−1,2),也形成'''R'''<sup>2</sup>的一个基。 *更一般的说,给定自然数''n''。''n''个线性无关的向量'''e'''<sub>1</sub>, '''e'''<sub>2</sub>, ..., '''e'''<sub>''n''</sub>可以在实数域上生成'''R'''<sup>''n''</sup>。因此,它们也是的一个基而'''R'''<sup>''n''</sup>的维度是''n''。这个基叫做'''R'''<sup>''n''</sup>的[[标准基]]。 *设''V''是由函数''e''<sup>''t''</sup>和''e''<sup>2''t''</sup>生成的[[实数]]向量空间。这两个函数是线性无关的,所有它们形成了''V''的基。 *设'''R'''[x]指示所有实数[[多项式]]的向量空间;则 (1, x, x<sup>2</sup>, ...)是'''R'''[x]的基。'''R'''[x]的维度因此等于[[艾禮富數|aleph-0]]。 == 基的扩張 == 如上所述,一个向量空间的每一组基都是一个极大的线性无关集合,同时也是极小的生成集合。可以证明,如果向量空间拥有一组基,那么每个线性无关的子集都可以扩张成一组基(也称为基的扩充定理),每个能够生成整个空间的子集也必然包含一组基。特别地,在任何线性无关集合和任何生成集合之间有一组基。以数学语言来说:如果<math>\mathfrak{L}</math>是在向量空间<math>\mathrm{V}</math>中的一个线性无关集合而集合<math>\mathfrak{G}</math>是一个包含<math>\mathfrak{L}</math>而且能够生成<math>\mathrm{V}</math>的集合,则存在<math>\mathrm{V}</math>的一组基<math>\mathfrak{B}</math>,它包含了<math>\mathfrak{L}</math>而且是<math>\mathfrak{G}</math>的子集:<math>\mathfrak{L} \subseteq \mathfrak{B} \subseteq \mathfrak{G}</math>。 以上两个结论可以帮助证明一个集合是否是给定向量空间的基。如果不知道某个向量空间的维度,证明一个集合是它的基需要证明这个集合不仅是线性无关的,而且能够生成整个空间。如果已知这个向量空间的维度(有限维),那么这个集合的元素个数必须等于维数,才可能是它的基。在两者相等时,只需要证明这个集合线性无关,或这个集合能够生成整个空间这两者之一就够了。这是因为线性无关的子集必然能扩充成基;而这个集合的元素个数已经等于基的元素个数,需要添加的元素是0个。这说明原集合就是一组基。同理,能够生成整个空间的集合必然包含一组基作为子集;但假如这个子集是真子集,那么元素个数必须少于原集合的元素个数。然而原集合的元素个数等于维数,也就是基的元素个数,这是矛盾的。这说明原集合就是一组基。 == 有序基和坐标 == 基底是作为向量空间的子集定义的,其中的元素并不按照顺序排列。为了更方便相关的讨论,通常会将基向量进行排列。比如说将:<math>\mathfrak{B} =\{ e_1, e_2 , \cdots , e_n \} </math>写成有序向量组:<math> ( e_1, e_2 , \cdots , e_n ) </math>。这样的有序向量组称为'''有序基'''。在有限维向量空间和可数维数的向量空间中,都可以自然地将基底表示成有序基。在有序基下,任意的向量都可以用确定的数组表示,称为向量的[[坐标]]。例如,在使用向量的坐标表示的时候习惯谈论“第一个”或“第二个”坐标,这只在指定了基的次序前提下有意义。在这个意义下,有序基可以看作是向量空间的坐标架。 设<math>\mathrm{V}</math>是在[[域 (数学)|域]]<math>\mathbb{F}</math>上的''n''维向量空间。在<math>\mathrm{V}</math>上确定一个有序基等价于确定一个从[[坐标空间]]<math>\mathbb{F}^n</math>到<math>\mathrm{V}</math>的一个选定[[同构|线性同构]]<math>\phi</math>。 ''证明'':这个证明利用了<math>\mathbb{F}^n</math>的标准基是有序基的事实。 首先假设 :<math>\phi : \; \; \mathbb{F}^n \rightarrow \mathrm{V}</math>是线性同构。可以定义<math>\mathrm{V}</math>的一组有序基<math>\{v_i \}_{1\leqslant i \leqslant n}</math>如下: : <math> v_i = \phi (e_i) , \; \; \forall i, \; 1\leqslant i \leqslant n . </math> 其中的<math>\{e_i \}_{1\leqslant i \leqslant n}</math>是<math>\mathbb{F}^n</math>的标准基。 反过来说,给定一个有序基,考虑如下定义的映射 : ''φ''(''x'') = ''x''<sub>1</sub>''v''<sub>1</sub> + ''x''<sub>2</sub>''v''<sub>2</sub> + ... + ''x''<sub>''n''</sub>''v''<sub>''n''</sub>, 这里的''x'' = ''x''<sub>1</sub>'''e'''<sub>1</sub> + ''x''<sub>2</sub>'''e'''<sub>2</sub> + ... + ''x''<sub>''n''</sub>'''e'''<sub>''n''</sub>是'''F'''<sup>''n''</sup>的一个元素。不难检查出''φ''是线性同构。 这两个构造明显互逆。所以''V''的有序基一一对应于线性同构'''F'''<sup>''n''</sup> → ''V''。 确定自有序基{''v''<sub>''i''</sub>}线性映射''φ''的逆映射为''V''装备了坐标:如果对于向量''v'' ∈ ''V'', ''φ''<sup>-1</sup>(''v'') = (''a''<sub>1</sub>, ''a''<sub>2</sub>,...,''a''<sub>''n''</sub>) ∈ '''F'''<sup>''n''</sup>,则''a''<sub>''j''</sub> = ''a''<sub>''j''</sub>(''v'')的分量是''v''的坐标,在''v'' = ''a''<sub>1</sub>(''v'') ''v''<sub>1</sub> + ''a''<sub>2</sub>(''v'') ''v''<sub>2</sub> + ... + ''a''<sub>''n''</sub>(''v'') ''v''<sub>''n''</sub>的意义上。 从向量''v''到分量''a''<sub>''j''</sub>(''v'')的映射是从''V''到'''F'''的线性映射,因为''φ''<sup>-1</sup>是线性的。所以它们是[[线性泛函]]。它们形成''V''的'''[[对偶空间]]'''的基,叫做'''对偶基'''。 == 概念 == 有时使用术语'''Hamel基'''(或'''代数基''')来称呼上文定义的基,这里在线性组合''a''<sub>1</sub>''v''<sub>1</sub> +… + ''a''<sub>''n''</sub>''v''<sub>''n''</sub>中项的数目总是有限的。 在[[希尔伯特空间]]和其他[[巴拿赫空间]]中,需要处理无限多向量的线性组合。在无限维的希尔伯特空间中,相互正交的向量的集合可能永不能通过有限线性组合扩展出整个空间。所谓的[[正交基]]是通过有时无限的线性组合扩展出这个空间的相互正交的单位向量的集合。除了在有限维情况之外,这个概念不纯粹是代数的,而区别于Hamel基;它也是更一般性有用的。“无限维希尔伯特空间的正交基因此不是Hamel基”。 在[[拓扑向量空间]]中,一般的说,可以定义為[[无穷级数]]并表达这个空间的元素为其他特定元素的“无限线性组合”。其中的有限和无限组合的基,前者被叫做“Hamel基”而后者被叫做“{{Link-en|Schauder基|Schauder basis}}”,对应的维度叫做'''Hamel维度'''和“Schauder维度”。 ===例子=== 在[[傅立叶级数]]的研究中,函数{1} ∪ { sin(''nx''), cos(''nx'') : ''n'' = 1, 2, 3, ... }是所有的在区间[0, 2π]上为平方可积分的(实数或复数值)的函数的(实数或复数)向量空间的“正交基”,这种函数''f''满足 :<math>\int_0^{2\pi} \left|f(x)\right|^2\,dx<\infty.</math> 函数{1} ∪ { sin(''nx''), cos(''nx'') : ''n'' = 1, 2, 3, ... }是线性无关的,所有在[0, 2π]上平方可积分的函数''f''是它们的“无限线性组合”,在如下意义上 :<math>\lim_{n\rightarrow\infty}\int_0^{2\pi}\biggl|a_0+\sum_{k=1}^n \bigl(a_k\cos(kx)+b_k\sin(kx)\bigr)-f(x)\biggr|^2\,dx=0</math> 对于适合的(实数或复数)系数''a''<sub>''k''</sub>, ''b''<sub>''k''</sub>。但是多数平方可积分函数不能表达为这些基函数的有限线性组合,因为它们不构成Hamel基。这个空间的所有Hamel基都大于这个函数的只可数无限集合。此类空间的Hamel基没有什么价值,而这些空间的正交基是傅立叶分析的根本。 == 参见 == *[[线性代数]] *[[线性组合]] ==外部链接== * [http://video.google.com/videoplay?docid=-7254479149869222300 MIT Linear Algebra Lecture on Bases] at Google Video, from MIT OpenCourseWare {{线性代数的相关概念}} [[Category:線性代數|J]]
本页使用的模板:
Template:Linear algebra
(
查看源代码
)
Template:Link-en
(
查看源代码
)
Template:线性代数的相关概念
(
查看源代码
)
返回
基 (線性代數)
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息