查看“截角超立方體”的源代码
←
截角超立方體
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{Polytopebox | name = 截角超立方体 | imagename = Schlegel half-solid truncated tesseract.png | caption = [[施莱格尔投影]]<BR>(可以看见[[正四面体]]胞) | polytope = 截角超立方体 | Type = [[均匀多胞体]] | group_type = | Cell = 24<br/>8 [[截角立方体|''3.8.8'']] [[Image:Truncated hexahedron.png|20px]]<BR>16 [[正四面体|''3.3.3'']] [[Image:Tetrahedron.png|20px]] | Face = 88<br/>64 [[三角形|{3}]]<BR>24 [[八边形|{8}]] | Edge =128 | Vertice =64 | Vertice_type =[[Image:Truncated 8-cell verf.png|80px]]<BR>Isosceles triangular pyramid | Schläfli =t<sub>0,1</sub>{4,3,3} | Symmetry_group = | dual = | Properties =[[Convex polytope|convex]] | Index_references = ''[[正十六胞体|12]]'' 13 ''[[Cantellated tesseract|14]]'' | Coxeter_group =BC<sub>4</sub>, [4,3,3], order 384 | Coxeter_diagram = {{CDD|node_1|4|node_1|3|node|3|node}} }} '''截角超立方体'''有24个[[胞]]:8个[[截角立方体]],和16个[[正四面体]]。 ==坐标== 截角超立方体可以通过在每条棱距离顶点<math>1/(\sqrt{2}+2)</math>处截断[[超立方体]]的每一个角来得到。每个截断的角会产生一个[[正四面体]]。 一个棱长为2的截角超立方体的每个顶点的[[笛卡儿坐标系]]坐标为: :<math>\left(\pm1,\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2})\right)</math> == 投影 == {| class=wikitable |+ [[正交投影]] |- align=center ![[考克斯特平面]] !B<sub>4</sub> !B<sub>3</sub> / D<sub>4</sub> / A<sub>2</sub> !B<sub>2</sub> / D<sub>3</sub> |- align=center !Graph |[[File:4-cube_t01.svg|160px]] |[[File:4-cube t01 B3.svg|160px]] |[[File:4-cube t01 B2.svg|160px]] |- align=center ![[二面体群]] |[8] |[6] |[4] |- align=center ![[考克斯特平面]] !F<sub>4</sub> !A<sub>3</sub> |- align=center !Graph |[[File:4-cube t01 F4.svg|160px]] |[[File:4-cube t01 A3.svg|160px]] |- align=center ![[二面体群]] |[12/3] |[4] |} {| class="wikitable" |[[Image:Truncated tesseract net.png|200px]]<BR>[[展开图]] |[[Image:Truncated tesseract stereographic (tC).png|200px]]<BR>三维正交投影 |} == 参考文献 == * [[Thorold Gosset|T. Gosset]]: ''On the Regular and Semi-Regular Figures in Space of n Dimensions'', Messenger of Mathematics, Macmillan, 1900 * [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]]: ** Coxeter, ''[[Regular Polytopes (book)|Regular Polytopes]]'', (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5) ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5) ** '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html] *** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10] *** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591] *** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45] * [[John Horton Conway|John H. Conway]], Heidi Burgiel, Chaim Goodman-Strass, ''The Symmetries of Things'' 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1<sub>n1</sub>) * [[Norman Johnson (mathematician)|Norman Johnson]] ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966) * {{PolyCell | urlname = section2.html| title = 2. Convex uniform polychora based on the tesseract (8-cell) and hexadecachoron (16-cell) - Models 13, 16, 17}} * {{KlitzingPolytopes|polychora.htm|4D|uniform polytopes (polychora)}} o3o3o4o - tat, o3x3x4o - tah, x3x3o4o - thex <references/> == 外部链接 == * [http://www.software3d.com/Tat.php Paper model of truncated tesseract] created using nets generated by [[Stella (software)|Stella4D]] software [[Category:四维几何]] [[Category:四维多胞体]] [[Category:多胞体]]
本页使用的模板:
Template:KlitzingPolytopes
(
查看源代码
)
Template:PolyCell
(
查看源代码
)
Template:Polytopebox
(
查看源代码
)
返回
截角超立方體
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息