查看“散射”的源代码
←
散射
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA|G1=物理學}} [[File:The Coorong South Australia.jpg|thumb|[[瑞利散射]]導致在白天時天空呈現出藍色,在日落時太陽發紅。]] 當傳播中的[[輻射]],像[[光波]]、[[音波]]、[[電磁波]]、或[[粒子]],在通過局部性的[[位勢]]時,由於受到位勢的作用,必須改變其直線軌跡,這物理過程,稱為'''散射'''。這局部性位勢稱為'''散射體''',或'''散射中心'''。局部性位勢各式各樣的種類,無法盡列;例如,粒子、氣泡、液珠、液體密度[[漲落]]、晶體缺陷、粗糙表面等等。在傳播的波動或移動的粒子的路徑中,這些特別的局部性位勢所造成的效應,都可以放在{{link-en|散射理論|Scattering theory}}的框架裏來描述。 ==單散射和多重散射== 假若輻射只被一個局部性散射體散射,則稱此為'''單散射'''。假若許多散射體集中在一起,輻射可能會被散射很多次,稱此為'''多重散射'''。單散射可以被視為一個[[隨機]]現象;而多重散射通常是比較命定性的。這是兩種散射的主要不同點。 由於單獨的散射體的位置,相對於輻射路徑,通常不會明確的知道。所以,散射結果強烈地依賴於入射軌道參數。對於觀測者,散射結果顯得相當的隨機。移動[[電子]]朝著[[原子核]]碰撞是一個標準案例。由於[[不確定性原理]],相對於電子的入射路徑,原子的確定位置是個未知數,無法準確地測量出來,碰撞後,電子的散射行為是隨機的。所以,單散射時常用[[機率分佈]]來描述 在多重散射過程裏,經過眾多的散射事件,散射作用的隨機性很容易會因為平均化而被凐滅不見,輻射的最終路徑會顯示為[[強度]]的命定性({{lang|en|deterministic}})分佈。光束穿過濃厚大霧是一個標準案例。多重散射可以與[[擴散]]類比。在許多狀況,兩個術語可以替代使用。用來製造多重散射的光學器材,稱為'''擴散器'''。 不是每一種單散射都是隨機地。一個完美控制的[[雷射]]束能夠準確地散射於一個微粒,產生出命定性的結果。這樣的狀況也會發生於[[雷達]]散射,目標大多數是[[宏觀]]物體,像飛機或火箭。 類似地,多重散射有時也會產生很隨機的結果,特別是[[相干性|相干輻射]]。當相干輻射被多重散射的時候,[[強度]]會發生隨機[[漲落]],稱此現象為[[散斑]]({{lang|en|speckle}})。假若,一個相干輻射的不同部分散射於不同的散射體,則也會產生散斑。在某些罕見的狀況,多重散射的散射次數並不多,隨機性並沒有被平均化凐滅。學術界公認,這類系統很不容易精確地模型化。 散射的主要研究問題,時常涉及到預測各種系統怎樣散射輻射。給予足夠的計算資源和系統資訊,這些問題大都可以解析。一個廣泛研究,更加困難的挑戰是[[逆散射問題]]({{lang|en|inverse scattering problem}})。這問題主要研究的是,從觀測到的散射行為,來決定入射輻射或散射體的性質。一般而言,解答不是唯一的;不同的散射體可以給予同樣的散射樣式。幸運地,科學家找到一些方法,來萃取許多關於散射體的資料。雖然這些資料並不完全,但還是相當有用。這些方法廣泛的用於[[感測器|感測]]和[[計量學]]({{lang|en|metrology}})<ref name="Colton1998">{{citation |last=Colton|first=David | last2 =Kress| first2 =Rainer|title=Inverse Acoustic and Electromagnetic Scattering Theory|year=1998|| publisher=Springer| edition= 2nd| isbn=978-3540628385 | language=en}}</ref>。 許多科技領域顯著地應用到散射和散射理論。例如,雷達感測、[[超音波檢查]]、[[半導體]]晶片檢驗、[[聚合]]過程監視、[[電腦成像]]等等。 ==電磁散射== [[File:Electron-scattering.png|thumb|200px|兩個[[電子]],經由一個虛[[光子]]的發射,而產生的散射,可以由[[費曼圖]]展示出來。]] [[電磁波]]是一種最為人熟知,最常碰到的輻射形式。其中,[[光波]]散射是不可避免的日常現象。[[無線電波]]散射則乃雷達科技的核心物理機制。因為某些方面的不同,電磁波散射可以清楚地分支為不同的領域,各自有各自的取名。彈性散射(涉及極微小的能量轉移)主要有[[瑞利散射]]和[[米氏散射]]。[[非彈性散射]]包括[[布里元散射]]({{lang|en|Brillouin scattering}})、[[拉曼散射]]、非彈性X-光散射、[[康普頓散射]]等等。 大多數物體都可以被看見,主要是因為兩個物理過程:光波散射和光波吸收。有些物體幾乎散射了所有入射光波,這造成了物體的白色外表。光波散射也可以給予物體顏色。例如,不同[[色調]]的藍色,像天空的天藍、眼睛的[[虹膜]]、鳥的羽毛<ref>{{cite journal |last= Prum |first= Richard O.|coauthors= Rodolfo H. Torres, Scott Williamson, Jan Dyck|year= 1998 |title= Coherent light scattering by blue feather barbs|journal=Nature |volume= 396 |issue= 6706|pages= 28–29 |doi= 10.1038/23838 }}</ref>等等。[[奈米粒子]]的共振光波散射會產生不同的高度飽和的,生動的[[色相]],特別是當涉及[[表面電漿子共振]]({{lang|en|surface plasmon resonance}})<ref>{{cite journal |last= Roqué|first= Josep |coauthors= J. Molera, P. Sciau, E。Pantos, M. Vendrell-Saz|year= 2006 |title= Copper and silver nanocrystals in lustre lead glazes: development and optical properties|journal=J. Eur. Ceramic Society |volume= 26|issue= 16|pages= 3813–3824 |doi=10.1016/j.jeurceramsoc.2005.12.024 }}</ref>。 在[[瑞利散射]]裏,電磁輻射(包括光波)被一個小圓球散射。圓球可能是一個粒子、泡沫、水珠、或甚至於密度漲落。物理學家[[瑞利勳爵]]最先發現這散射效應的正確模型,因此稱為'''瑞利散射'''。為了要符合瑞利模型的要求,圓球的直徑必須超小於入射波的[[波長]],通常上界大約是波長的1/10。在這個尺寸範圍內,散射體的形狀細節並不重要,通常可以視為一個同體積的圓球。當陽光入射於大氣層時,氣體分子對於陽光的瑞利散射,使得天空呈現藍色。這是根據瑞利著名的方程式: :<math>I\propto 1/ \lambda^4\,\!</math> 其中,<math>I\,\!</math>是強度,<math>\lambda\,\!</math>是波長。 陽光的藍色光波部分波長比較短,散射強度比較大;而紅色光波部分波長比較長,散射強度比較小。[[外太空]]的輻射通過地球大氣層時,衰減的主要原因是輻射吸收和瑞利散射。散射的程度變化是粒子直徑與波長比例的[[函數]],連同許多其它因子,像[[極化]]、角度、以及[[相干性]]等等。 瑞利散射不適用於直徑較大的散射體。德國物理學家[[古斯塔夫·米]]最先找到這問題的解答。因此,大於瑞利尺寸的圓球的散射被稱為[[米氏散射]]。在米氏區域內,散射體的形狀變的很重要。這理論只能用在[[類球面|類球體]]。 瑞利散射和米氏散射都可以被視為彈性散射,光波的能量並沒有大幅度地改變。可是,移動的散射體所散射的電磁波會產生[[都卜勒效應]],能量會稍微改變。這效應可以被用來偵測和測量散射體的速度,可以應用於[[光達]]({{lang|en|LIDAR}})和[[雷達]]這一類科技儀器。 當粒子直徑與波長比例大於10的時候,[[幾何光學]]的定律可以用來描述光波與粒子的相互作用。在這裏,通常不稱這相互作用為散射。 對於一些瑞利模型和米式模型不適用的案例,像不規則形狀粒子,有很多種不同的[[數值計算方法]]可以讓我們選擇使用,求算散射的解答。最常見的方法是[[有限元方法]]。此法解析[[馬克士威方程組]],尋求散射的[[電磁場]]的分佈。程式工程師特別設計出複雜的軟體,專門計算這類問題。只需要使用者給出散射體的折射率或折射率函數,電腦就可以計算出電磁場結構的二維或三維模型。假若結構比較龐大複雜,則可能需要高功能電腦大量的運算時間,才能得到結果。 另外一種特別的電磁散射是[[相干性|相干]][[回散射]]({{lang|en|backscatter}})。這是一個相當不為人知的現象。當相干輻射(像雷射光束)傳播通過一個擁有很多散射體的介質時,電磁波會被散射很多次。一個代表性的多重散射介質例子是濃厚雲塊。朝著原本入射方向的反方向,相干回散射效應會產生一個非常大的峰值強度。實際上,一般的電磁波很大部分都會散射回去。對於非相干輻射,散射通常會在反方向產生一個局部最大值。可是,相干輻射的峰值強度是非相干輻射的兩倍。測量這些數值是很困難的。原因有兩個。第一個原因是,直接地測量回散射同時也會阻擋入射電磁波。但是,科學家已經想出精巧的方法來克服這問題。第二個原因是,強度峰通常會是非常的尖銳。偵測器必須擁有非常高的角解析度,才能夠看到峰值,不會將強度峰值與鄰近的低強度值平均起來。 ==參閱== * [[廷得耳效應]] * [[X射線晶體學]] * [[布拉格定律|布拉格散射]] * [[拉塞福散射]] * [[湯姆森散射]] * [[中子散射]]({{lang|en|neutron scattering}}) * [[小角散射]]({{lang|en|small-angle scattering}}) ==參考文獻== {{reflist}} ==外部連結== * [https://web.archive.org/web/20081223002248/http://www.neutron.anl.gov/ 中子散射網] [[Category:基本物理概念|S]] [[Category:散射|S]] [[Category:原子物理學|S]] [[Category:原子核物理學|S]] [[Category:粒子物理學|S]]
本页使用的模板:
Template:Citation
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Lang
(
查看源代码
)
Template:Link-en
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Reflist
(
查看源代码
)
返回
散射
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息