查看“纳维-斯托克斯方程”的源代码
←
纳维-斯托克斯方程
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA|G1=Chemistry}} '''纳维尔-斯托克斯方程'''({{lang|en|Navier-Stokes equations}}),以[[克劳德-路易·纳维]](Claude-Louis Navier)和[[乔治·斯托克斯]]命名,是一组描述像[[液体]]和[[空气]]这样的[[流体]]物质的方程。这些方程建立了流体的粒子[[动量]]的改变率([[力]])和作用在液体内部的压力的变化和耗散粘滞力(类似于[[摩擦力]])以及重力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。 纳维尔-斯托克斯方程可用于描述大量在学术研究和经济生活中的重要现象之物理过程,因此有很重要的研究价值。它们可以用于模拟[[天气]],[[洋流]],管道中的水流,[[星系]]中恒星的运动,[[翼型]]周围的气流。它们也可以用于飞行器和车辆的设计,血液循环的研究,电站的设计,污染效应的分析,等等。 纳维-斯托克斯方程依赖[[微分方程]]来描述流体的运动。不同于[[代数方程]],这些方程不寻求建立所研究的变量(譬如[[速度]]和[[压强|壓力]])的关系,而寻求建立这些量的''变化率''或[[通量]]之间的关系。用数学术语来讲,这些变化率对应于变量的[[导数]]。其中,最简单情况的0粘滞度的[[理想流体]]的纳维-斯托克斯方程表明,加速度(速度的导数,或者说变化率)是和内部压力的导数成正比的。 这表示对于给定的物理问题,至少要用[[微积分]]才可以求得其纳维-斯托克斯方程的解。实用上,也只有最简单的情况才能用这种方法获得已知解。这些情况通常涉及稳定态(流场不随时间变化)的非[[紊流]],其中流体的[[粘滞系数]]很大或者其速度很小(低[[雷诺数]])。 对于更复杂的情形,例如[[厄尔尼诺]]这样的全球性气象系统或[[机翼]]的[[升力]],纳维-斯托克斯方程的解必须借助计算机才能求得。这个科学领域称为[[计算流体力学]]。 虽然[[紊流]]是日常经验中就可以遇到的,但这类非线性问题极难求解。[[克雷数学学院]]于2000年5月21日设立了[[千禧年大獎難題|一个$1,000,000的大奖]],奖励任何对于能够帮助理解这一现象的数学理论作出实质性进展的任何人。 ==性质== ===非线性=== 纳维-斯托克斯方程在大多数实际情况下是[[非线性]]的[[偏微分方程]]。<ref>Fluid Mechanics(Schaum's Series), M. Potter, D.C. Wiggert, Schaum's Outlines, McGraw-Hill (USA), 2008, ISBN 978-0-07-148781-8</ref><ref>Vectors, Tensors, and the basic Equations of Fluid Mechanics, R. Aris, Dover Publications, 1989, ISBN (10) 0-486-66110-5</ref>在某些情况下,一维流和斯托克斯流(或蠕动流)方程可以简化为线性方程组。非线性使得很多的问题很难或者没法解决,但是它却是动荡方程组模型的重要影响因素。非线性是由于[[对流]]加速(与点速度变化相关联的加速度),因此,任何对流无论湍流与否都会涉及非线性。 === 湍流([[紊流]]) === 湍流是时变的无序行为,这种行为常见于许多流体流动中。人们普遍认为,这是由于惯性流体被看作为一个整体而产生的:时间依赖性和对流加速度;因此惯性的影响很小的流体往往是层流([[雷诺数]]量化了流所受惯性的大小)。虽然不完全确定,但一般相信纳维-斯托克斯方程能够合理地描述湍流。<ref>Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN(VHC Inc.)0-89573-752-3</ref> 纳维-斯托克斯方程关于湍流的数值解是非常难得到的,而且由于湍流的显著不同的混合长度的尺度,需要精细分辨率的稳定解的计算时间变得不可行(见直接数值模拟)。尝试使用层流来解决湍流问题的方法通常会导致时间不稳定的解,它不能够适当收敛。为了解决这个问题,时间平均方程,如雷诺平均纳维-斯托克斯方程(RANS),再辅以湍流模型,被用作实际的计算流体动力学模拟湍流时(CFD)的应用程序。例如Spalart-Allmaras湍流,K-ω湍流,k-ε湍流和SST模型。另一种方法解决数值的纳维-斯托克斯方程是大涡模拟(LES)。这种方法在计算上是比RANS方法更昂贵(在时间和计算机存储器上),但因为较大的湍流尺度被明确地解决所以会产生更好的结果。 ===适用性=== 补充方程(例如,质量守恒定律)和良好的边界条件,使纳维-斯托克斯方程似乎可以进行流体运动的精确建模;甚至湍流(平均而言)也符合实际观察结果。纳维-斯托克斯方程假定所研究的流体是连续(它是无限可分的,而不是由粒子组成),并且是相对静止的。在非常小的尺度或极端条件下,由离散分子组成的真实流体将产生与由纳维-斯托克斯方程建模的连续流体不同的结果。根据Knudsen数的问题,统计力学甚至分子动力学可能是一个更合适的方法。另一个限制是方程的复杂性。对于普遍流体家族的公式是存在的,但纳维-斯托克斯方程对不常见流系的应用,往往会导致非常复杂的构成,而且该配方是目前研究的一个领域。出于这个原因,这些方程通常用于描述牛顿流体。研究这种液体是“简单”的,因为粘度模型最终被线性化;真正描述其他类型流体(如血液)的普遍的模型截至2012年还不存在。 {{NoteTA|G1=Chemistry}} == 基本假设 == 在解释纳维-斯托克斯方程的细节之前,我们必须首先对流体的性质作几个假设。第一个假设是流体是连续的。这强调它不包含形成内部的空隙,例如,溶解的气体的气泡,而且它不包含雾状粒子的聚合。另一个必要的假设是所有涉及到的场,全部是[[可微]]的,例如[[压强]],[[速度]],[[密度]],[[温度]],等等。 该方程从[[质量]],[[动量]],和[[能量]]的守恒的基本原理导出。对此,有时必须考虑一个有限的任意体积,称为[[控制体积]],在其上这些原理很容易应用。该有限体积记为<math>\Omega</math>,而其表面记为<math>\partial\Omega</math>。该控制体积可以在空间中固定,也可能随着流体运动。这会导致一些特殊的结果,我们将在下节看到。 === 随質导数 === 运动流体的属性的变化,譬如[[大气]]中的风速的变化,可以有两种不同的方法来测量。可以用气象站或者气象气球上的[[风速仪]]来测量。显然,第一种情况下风速仪测量的速度是所有运动的粒子经过一个固定点的速度,而第二种情况下,仪器在测量它随着流体运动时速度的变化。同样的论证对于密度、温度、等等的测量也是成立的。因此,当作微分时必须区分两种情况。第一种情况称为''空间导数''或者''欧拉导数''。第二种情况称为''实质''或''拉格朗日''导数。 随質导数定义为算子(operator): :<math>\frac{\mathrm{D}}{\mathrm{D}t}(\star) = \frac{\partial(\star)}{\partial t} + (\mathbf{v}\cdot\nabla)(\star)</math> 其中<math>\mathbf{v}</math>是流体的速度。方程右边的第一项是普通的欧拉导数(也就是在静止参照系中的导数)而第二项表示由于流体的运动带来的变化。这个效应称为[[移流]](advection)。 '''L'''的守恒定律在一个[[控制体积]]上的积分形式是: :<math>\frac{\mathrm{d}}{\mathrm{d}t}\int_\Omega \mathbf{L}\,\mathrm{d}\Omega = 0</math> 因为Ω是共动的,它随着时间而改变,所以我们不能将时间导数和积分简单的交换。 :<math>\frac{\mathrm{d}}{\mathrm{d}t}\int_\Omega \mathbf{L}\,\mathrm{d}\Omega=\int_{\Omega}\frac{\partial}{\partial t}\mathbf{L}\,\mathrm{d}\Omega+\int_{\partial \Omega} \mathbf{L} \left(\mathbf{v}\cdot \mathbf{n}\,\mathrm{d}\partial\Omega\right)=\int_\Omega \left[\frac{\partial}{\partial t}\mathbf{L}+\nabla\cdot\left(\mathbf{L}\mathbf{v}\right)\right]\mathrm{d}\Omega=0</math> 因为这个表达式对于所有<math>\Omega</math>成立,它可以简化为: :<math>\frac{\mathrm{D}}{\mathrm{D}t}\mathbf{L} + \left(\nabla\cdot \mathbf{v}\right) \mathbf{L} = \frac{\partial}{\partial t} \mathbf{L}+ \nabla\cdot\left(\mathbf{v} \mathbf{L}\right) = 0</math> 对于不是密度的量(因而它不必在空间中积分),<math>\frac{\mathrm{D}}{\mathrm{D}t}</math>给出了正确的共动时间导数。 === 守恒定律 === {{main|守恒定律}} NS方程可以从守恒定律通过上述变换导出,并且需要用[[状态方程|状态定律]]来[[闭包|闭合]]。 在控制体积上,使用上述变换,下列的量视为守恒: * [[质量]] * [[能量]] * [[动量]] * [[角动量]] ==== 连续性方程 ==== 质量的守恒写作: :<math>\frac{\partial\rho}{\partial t} + \nabla\cdot(\rho\mathbf{v})= 0</math> 其中 :<math>\rho</math>是流体的密度。 在不可压缩流体的情况 <math>\rho</math>不是时间或空间的函数。方程简化为: :<math>\nabla\cdot\mathbf{v} = 0</math> ==== 动量守恒 ==== 动量守恒写作: :<math>\frac{\partial}{\partial t}\left(\rho\mathbf{v}\right) + \nabla(\rho\mathbf{v}\otimes\mathbf{v}) = \sum\rho\mathbf{f}</math> 注意<math>\mathbf{v}\otimes\mathbf{v}</math>是一个[[张量]],<math>\otimes</math>代表[[张量积]]。 我们可以进一步简化,利用连续性方程,这成为: :<math>\rho\frac{D\mathbf{v}}{D t}=\sum\rho\mathbf{f}</math> 我们可以认出这就是通常的'''F'''=m'''a'''。 == 方程组 == === 一般形式 === ==== 方程组的形式 ==== 纳维-斯托克斯方程的一般形式是: :<math>\rho\frac{\mathrm{D}\mathbf{v}}{\mathrm{D} t} = \nabla \cdot\mathbb{P} + \rho\mathbf{f}</math> 关于动量守恒。[[张量]]<math>\mathbb{P}</math>代表施加在一个流体粒子上的表面力([[应力张量]])。除非流体是由象旋涡这样的旋转自由度组成,<math>\mathbb{P}</math>是一个对称张量。一般来讲,我们有如下形式: :<math>\mathbb{P} = \begin{pmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{pmatrix} = - \begin{pmatrix} p&0&0\\ 0&p&0\\ 0&0&p \end{pmatrix} + \begin{pmatrix} \sigma_{xx}+p & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy}+p & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz}+p \end{pmatrix} </math> 其中<math>\sigma</math>是法向约束,而<math>\tau</math>是切向约束。 [[迹]]<math>\sigma_{xx}+\sigma_{yy}+\sigma_{zz}</math>在流体处于平衡态时为0。这等价于流体粒子上的法向力的积分为0。 我们再加上连续性方程: :<math>\frac{\mathrm{D}\rho}{\mathrm{D}t} + \rho\nabla\cdot\mathbf{v} = 0</math> 对于''处于平衡''的液体,<math>\mathbb{P}</math>的迹是3''p''。 其中 :''p''是压强 最后,我们得到: :<math>\rho\frac{\mathrm{D}\mathbf{v}}{\mathrm{D} t} = -\nabla p + \nabla \cdot\mathbb{T} + \rho\mathbf{f}</math> 其中<math>\mathbb{T}</math>是<math>\mathbb{P}</math>的非对角线部分。 ==== 闭合问题 ==== 这些方程是不完整的。要对它们进行完备化,必须对<math>\mathbb{P}</math>的形式作一些假设。例如在[[理想流体]]的情况<math>\tau</math>分量为0。用于完备方程组的方程是[[状态方程]]。 再如,[[压强]]可以主要是[[密度]]和[[温度]]的函数。 要求解的变量是速度的各个分量,流体密度,静压力,和[[温度]]。流场假定为[[可微]]并[[连续函数|连续]],使得这些平衡得以用偏微分方程表达。这些方程可以转化为[[涡度]]和[[流函数]]这些次变量的威尔金森方程组。解依赖于流体的性质(例如[[粘滞度]]、[[比热]]、和[[热导率]]),并且依赖于所研究的区域的边界条件。 <math>\mathbb{P}</math>的分量是流体的一个[[无穷小]]元上面的约束。它们代表垂直和剪切约束。<math>\mathbb{P}</math>是[[对称]]的,除非存在非零的[[自旋密度]]。 所谓[[非牛顿流体]]就是其中该张量没有特殊性质使得方程的特殊解出现的流体 == 特殊形式 == 这些是问题的特定的常见简化,有时解是已知的。 === 牛顿流体 === {{main|牛顿流体}} 在牛顿流体中,如下假设成立: :<math>\tau_{ij}=\mu\left(\frac{\partial v_i}{\partial x_j}+\frac{\partial v_j}{\partial x_i}-\frac{2}{3}\delta_{ij}\nabla\cdot\mathbf{v}\right)</math> 其中 :<math>\mu</math>是液体的[[黏度|粘滞度]]。 :<math>\rho \left(\frac{\partial \mathbf{v}}{\partial t}+\nabla_{\mathbf{v}}\mathbf{v}\right)=\rho \mathbf{f}-\nabla p +\mu\left(\Delta \mathbf{v}+\frac{1}{3}\nabla\left(\nabla\cdot \mathbf{v}\right)\right)</math> :<math>\rho \left(\frac{\partial v_i}{\partial t}+v_j\frac{\partial v_i}{\partial x_j}\right)=\rho f_i-\frac{\partial p}{\partial x_i}+\mu\left(\frac{\partial ^2 v_i}{\partial x_j \partial x_j}+\frac{1}{3}\frac{\partial ^2 v_j}{\partial x_i \partial x_j}\right)</math> 其中为简化书写,对脚标使用了[[爱因斯坦求和约定]]。 不采用简化书写的完整形式非常繁琐,分别为: 动量守恒: :<math> \rho \cdot \left({\partial u \over \partial t}+ u {\partial u \over \partial x}+ v {\partial u \over \partial y}+ w {\partial u \over \partial z}\right) = k_x -{\partial p \over \partial x} + {\partial \over \partial x} \left[ \mu \cdot \left(2 \cdot {\partial u \over \partial x}-\frac{2}{3}\cdot (\nabla \cdot \vec{v} \right) \right] + {\partial \over \partial y}\left[\mu \cdot \left({\partial u \over \partial y} + {\partial v \over \partial x} \right) \right] + {\partial \over \partial z}\left[\mu \cdot \left({\partial w \over \partial x} + {\partial u \over \partial z} \right) \right]</math> :<math> \rho \cdot \left({\partial v \over \partial t}+ u {\partial v \over \partial x}+ v {\partial v \over \partial y}+ w {\partial v \over \partial z}\right) = k_y -{\partial p \over \partial y} + {\partial \over \partial y} \left[ \mu \cdot \left(2 \cdot {\partial v \over \partial y}-\frac{2}{3}\cdot (\nabla \cdot \vec{v} \right) \right] + {\partial \over \partial z}\left[\mu \cdot \left({\partial v \over \partial z} + {\partial w \over \partial y} \right) \right] + {\partial \over \partial x}\left[\mu \cdot \left({\partial u \over \partial y} + {\partial v \over \partial x} \right) \right]</math> :<math> \rho \cdot \left({\partial w \over \partial t}+ u {\partial w \over \partial x}+ v {\partial w \over \partial y}+ w {\partial w \over \partial z}\right) = k_z -{\partial p \over \partial z} + {\partial \over \partial z} \left[ \mu \cdot \left(2 \cdot {\partial w \over \partial z}-\frac{2}{3}\cdot (\nabla \cdot \vec{v} \right) \right] + {\partial \over \partial x}\left[\mu \cdot \left({\partial w \over \partial x} + {\partial u \over \partial z} \right) \right] + {\partial \over \partial y}\left[\mu \cdot \left({\partial v \over \partial z} + {\partial w \over \partial y} \right) \right]</math> 质量守恒: :<math> {\partial \rho \over \partial t} + {\partial(\rho \cdot u)\over \partial x}+{\partial(\rho \cdot v) \over \partial y}+{\partial(\rho \cdot w) \over \partial z}=0 </math> 因为''密度''是一个未知数,我们需要另一个方程。 能量守恒: :<math> \rho \left({\partial e \over \partial t}+ u {\partial e \over \partial x}+ v {\partial e \over \partial y}+ w {\partial e \over \partial z}\right) = \left( {\partial \over \partial x} \left(\lambda \cdot {\partial T \over \partial x} \right) + {\partial \over \partial y} \left(\lambda \cdot {\partial T \over \partial y} \right) + {\partial \over \partial z} \left(\lambda \cdot {\partial T \over \partial z} \right) \right) - p \cdot \left( \nabla \cdot \vec{v} \right) + \vec{k} \cdot \vec{v} + \rho \cdot \dot{q}_s + \mu \cdot \Phi</math> 其中: :<math>\Phi = 2 \cdot \left[ \left({\partial u \over \partial x} \right)^2+\left({\partial v \over \partial y}\right)^2+\left({\partial w \over \partial z}\right)^2 \right] + \left({\partial v \over \partial x}+{\partial u \over \partial y} \right)^2 + \left({\partial w \over \partial y}+{\partial v \over \partial z} \right)^2 + \left({\partial u \over \partial z}+{\partial w \over \partial x} \right)^2 -\frac{2}{3} \cdot \left({\partial u \over \partial x}+{\partial v \over \partial y}+{\partial w \over \partial z} \right)^2</math> 假设一个[[理想气体]]: :<math>e = c_p \cdot T - \frac{p}{\rho}</math> 上面是一共6个方程6个未知数的系统。(u,v,w,T,e以及 <math>\rho</math>)。 === 宾汉(Bingham)流体 === {{main|宾汉流体}} 在宾汉流体中,我们有稍微不同的假设: :<math>\tau_{ij}=\tau_0 + \mu\frac{\partial v_i}{\partial x_j},\;\frac{\partial v_i}{\partial x_j}>0 </math> 那些流体在开始流动之前能够承受一定的剪切。[[牙膏]]是一个例子。 === 幂律流体 === {{main|幂律流体}} 这是一种理想化的[[流体]],其[[剪切应力]],<math>\tau</math>,由下式给出 :<math>\tau = K \left( \frac {\partial u} {\partial y} \right)^n </math> 该形式对于模拟各种一般流体有用。 === 不可壓缩流體 === {{main|不可壓缩流體}} 其纳维-斯托克斯方程(Navier-Stoke equation)分为[[動量守恆]]公式 :<math> \overbrace{\rho \Big( \underbrace{\frac{\partial \mathbf{v}}{\partial t}}_{ \begin{smallmatrix} \text{Unsteady}\\ \text{acceleration} \end{smallmatrix}} + \underbrace{(\mathbf{v} \cdot \nabla) \mathbf{v}}_{ \begin{smallmatrix} \text{Convective} \\ \text{acceleration} \end{smallmatrix}}\Big)}^{\text{Inertia}} = \underbrace{-\nabla p}_{ \begin{smallmatrix} \text{Pressure} \\ \text{gradient} \end{smallmatrix}} + \underbrace{\mu \nabla^2 \mathbf{v}}_{\text{Viscosity}} + \underbrace{\mathbf{f}}_{ \begin{smallmatrix} \text{Other} \\ \text{forces} \end{smallmatrix}} </math> 和[[質量守恆]]公式 :<math>\nabla\cdot\mathbf{v}=0</math>。 其中,對不可壓縮牛頓流體來說,只有對流項(convective terms)為非線性形式。對流加速度(convective acceleration)來自於流體流動隨空間之變化所產生的速度改變,例如:當流體通過一個漸縮噴嘴(convergent nozzle)時,流體產生加速之情況。由於此項的存在,對於暫態運動中的流體來說,其流場速度變化不再單是時間的函數,亦與空間有關。 另外一個重要的觀察重點,在於黏滯力(viscosity)在流場中的以流體速度作拉普拉斯運算來表現。這暗示了在牛頓流體中,黏滯力為動量擴散(diffusion of momentum),與熱擴散方程式非常類似。 :<math>e_{ij}=\frac{1}{2}\left(\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i}\right)</math>; :<math>\Delta=e_{ii}</math>是[[散度]], :<math>\delta_{ij}</math>是[[克罗内克记号]]。 若<math>\mu</math>在整个流体上均匀,动量方程简化为 :<math> \rho\frac{Du_i}{Dt}=\rho f_i-\frac{\partial p}{\partial x_i} +\mu \left( \frac{\partial^2u_i}{\partial x_j\partial x_j}+ \frac{1}{3}\frac{\partial\Delta}{\partial x_i}\right) </math> (若<math>\mu=0</math>这个方程称为[[欧拉方程 (流体动力学)|欧拉方程]];那里的重点是[[可压缩流]]和[[冲击波]])。 如果现在再有<math>\rho</math>为常数,我们得到如下系统: :<math> \rho \left({\partial v_x \over \partial t}+ v_x {\partial v_x \over \partial x}+ v_y {\partial v_x \over \partial y}+ v_z {\partial v_x \over \partial z}\right)= \mu \left[{\partial^2 v_x \over \partial x^2}+{\partial^2 v_x \over \partial y^2}+{\partial^2 v_x \over \partial z^2}\right]-{\partial p \over \partial x} +\rho g_x</math> :<math> \rho \left({\partial v_y \over \partial t}+ v_x {\partial v_y \over \partial x}+ v_y {\partial v_y \over \partial y}+ v_z {\partial v_y \over \partial z}\right)= \mu \left[{\partial^2 v_y \over \partial x^2}+{\partial^2 v_y \over \partial y^2}+{\partial^2 v_y \over \partial z^2}\right]-{\partial p \over \partial y} +\rho g_y</math> :<math> \rho \left({\partial v_z \over \partial t}+ v_x {\partial v_z \over \partial x}+ v_y {\partial v_z \over \partial y}+ v_z {\partial v_z \over \partial z}\right)= \mu \left[{\partial^2 v_z \over \partial x^2}+{\partial^2 v_z \over \partial y^2}+{\partial^2 v_z \over \partial z^2}\right]-{\partial p \over \partial z} +\rho g_z</math> 连续性方程(假设不可压缩性): :<math> {\partial v_x \over \partial x}+{\partial v_y \over \partial y}+{\partial v_z \over \partial z}=0 </math> : ''N-S方程的简化版本。采用《'''不可压缩流'''》,Ronald Panton所著第二版'' 注意纳维-斯托克斯方程仅可近似描述液体流,而且在非常小的尺度或极端条件下,由离散的分子和其他物质(例如悬浮粒子和溶解的气体)的混合体组成的真实流体,会产生和纳维-斯托克斯方程所描述的连续并且齐性的液体不同的结果。依赖于问题的纳森数,统计力学可能是一个更合适的方法。但是,纳维-斯托克斯方程对于很大范围的实际问题是有效的,只要记住他们的缺陷是天生的就可以了。 == 参看 == * [[雷诺数]] * [[马赫数]] * [[雷诺平均纳维-斯托克斯方程]] * [[納維-斯托克斯存在性與光滑性]] == 参考文献 == <div class="references-small"> <references /> * {{lang|en|Inge L. Rhyming ''Dynamique des fluides'', 1991 PPUR.}} * {{lang|en|Polyanin A.D., Kutepov A.M., Vyazmin A.V., Kazenin D.A., ''Hydrodynamics, Mass and Heat Transfer in Chemical Engineering'', Taylor & Francis, London, 2002. ISBN 0-415-27237-8.}} </div> == 外部链接 == * [https://web.archive.org/web/20100613001632/http://claymath.org/millennium/Navier-Stokes_Equations/ 克雷数学研究院纳维-斯托克斯方程大奖] ** [https://web.archive.org/web/20051031010327/http://www.claymath.org/millennium/Navier-Stokes_Equations/Official_Problem_Description.pdf 该问题的正式命题] * [https://web.archive.org/web/20050828100019/http://astron.berkeley.edu/~jrg/ay202/node50.html 纳维-斯托克斯方程的一个推导] * [http://www.allstar.fiu.edu/aero/Flow2.htm 纳维-斯托克斯方程的推导] * [http://www.grc.nasa.gov/WWW/K-12/airplane/nseqs.html NASA关于纳维-斯托克斯方程的网页] * [http://eqworld.ipmnet.ru/en/solutions/npde/npde6102.pdf 纳维-斯托克斯方程(一些精确解)],位于EqWorld:数学方程的世界 {{连续介质力学}} {{Authority control}} [[Category:基本物理概念]] [[Category:连续介质力学]] [[Category:偏微分方程]] [[Category:空气动力学]] [[Category:流体力学中的方程]] [[Category:千禧年大奖难题]]
本页使用的模板:
Template:Authority control
(
查看源代码
)
Template:Lang
(
查看源代码
)
Template:Main
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:连续介质力学
(
查看源代码
)
返回
纳维-斯托克斯方程
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息