查看“线性分类器”的源代码
←
线性分类器
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
在[[機器學習]]領域,分類的目標是指將具有相似特徵的对象聚集。而一個'''線性分類器'''則透過特徵的[[線性組合]]來做出分類決定,以達到此種目的。对象的特征通常被描述为特征值,而在向量中则描述为特征向量。 == 定義 == 如果輸入的特徵向量是[[實數]]向量<math>\vec x</math>,則輸出的分數為: :<math>y = f(\vec{w}\cdot\vec{x}) = f\left(\sum_j w_j x_j\right)</math>, 其中<math>\vec w</math>是一個權重向量,而''f''是一個函數,该函数可以通过预先定义的功能块,映射兩個向量的[[數量積|點積]],得到希望的輸出。權重向量<math>\vec w</math>是從带标签的訓練樣本集合中所學到的。通常,"f"是個簡單函數,會將超过一定阈值的值對應到第一類,其它的值對應到第二類。一個比较複雜的"f"則可能將某個東西歸屬於某一類。 對於一個二元分類問題,可以设想成是将一个线性分类利用[[超平面]]划分高维空间的情况: 在超平面一側的所有點都被分類成"是",另一側則分成"否"。 作为最快分類器,線性分類器通常应用于对分类速度有较高要求的情况下,特別是當<math>\vec x</math>为稀疏向量时。雖然如此,[[決策樹]]可以更快。此外,當<math>\vec x</math>的維度很大時,線形分類器通常表現良好。如[[文本分類]]時,傳統上,<math>\vec x</math>中的一個元素是文章所使用到的某個辭彙的出現的次數。在這種情況下,分類器應被適當地[[正則化 (數學)|正則化]]。 == 生成模型與判別模型 == 有兩種類型用來決定<math>\vec w</math><ref>T. Mitchell, Generative and Discriminative Classifiers: Naive Bayes and Logistic Regression. Draft Version, 2005 [http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf download]</ref><ref>A. Y. Ng and M. I. Jordan. On Discriminative vs. Generative Classifiers: A comparison of logistic regression and Naive Bayes. in NIPS 14, 2002. [http://www.cs.berkeley.edu/~jordan/papers/ng-jordan-nips01.ps download]</ref>的線性分類器。第一種模型[[條件機率]]<math>P(\vec x|{\rm class})</math>。這類的算法包括: * [[線性判別分析]](LDA) --- 假設為[[常態分佈|高斯]]條件密度模型。 * [[朴素貝葉斯分類器]] --- 假設為[[条件独立性假设]]模型。 第二種方式則稱為[[判別模型]](discriminative models),这种方法是试图去最大化一個[[訓練集]](training set)的輸出值。在訓練的成本函數中有一個額外的項加入,可以容易地表示[[正則化 (數學)|正則化]]。例子包含: * [[Logit模型]] --- <math>\vec w</math>的[[最大似然估計]],其假設觀察到的訓練集是由一個依赖于分類器的輸出的二元模型所產生。 * [[感知元]](Perceptron) --- 一個試圖去修正在訓練集中遇到錯誤的算法。 * [[支持向量機]] --- 一個試圖去最大化決策超平面和訓練集中的样本間的[[邊界 (機器學習)|邊界]](margin)的算法。 '''注意:'''相對於名字,線性判別分析在[[分類學]]並不屬於判別模型這類。然而,當我們比較線性判別分析和另一主要的線性[[降维]]算法:[[主成分分析]],它的名字則是有意義的。線性判別分析是一個[[監督式學習]]算法,會使用資料中的标签。而主成分分析是一個不考慮標籤的[[非監督式學習]]算法。简而言之,這個名字是一個歷史因素<ref>R.O. Duda, P.E. Hart, and D.G. Stork. "Pattern Classification", Wiley, 2001. ISBN 0-471-05669-3, p. 117.</ref>。 判別訓練通常會比模型化條件密度函數產生較高的準確。然而,在處理遺失資料時,使用條件密度模型通常是更為簡單的。 所有以上所列線性分類器演算法,只要使用[[kernel trick]]都可被轉成在另一個向量空間的非線性演算法。 == 另見 == * [[二次分類器]] * [[統計分類]] == 参考文献 == === 引用 === {{Reflist|30em}} === 来源 === {{refbegin}} * Y. Yang, X. Liu, "A re-examination of text categorization", Proc. ACM SIGIR Conference, pp. 42-49,(1999). [http://citeseer.ist.psu.edu/yang99reexamination.html paper @ citeseer] * R. Herbrich, "Learning Kernel Classifiers: Theory and Algorithms," MIT Press,(2001). ISBN 0-262-08306-X {{refend}} [[Category:分類演算法]] [[Category:統計分類]]
本页使用的模板:
Template:Refbegin
(
查看源代码
)
Template:Refend
(
查看源代码
)
Template:Reflist
(
查看源代码
)
返回
线性分类器
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息