查看“莱斯分布”的源代码
←
莱斯分布
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{Link style|time=2015-12-12T05:12:26+00:00}} {{noteTA |1=zh-hans:分布; zh-hant:分佈; |2=zh-hans:概率; zh-hant:機率; |3=zh-hans:贝塞尔函数; zh-hant:貝索函數; }} {{機率分佈 |name =Rice |type =density |pdf_image =[[File:Rice_distributiona_PDF.png|325px|Rice probability density functions σ=1.0]]<br /><small>Rice probability density functions for various ''v'' with σ=1.</small><br />[[File:Rice_distributionb_PDF.png|325px|Rice probability density functions σ=0.25]]<br /><small>Rice probability density functions for various ''v'' with σ=0.25.</small> |cdf_image =[[File:Rice_distributiona_CDF.png|325px|Rice cumulative density functions σ=1.0]]<br /><small>Rice cumulative density functions for various ''v'' with σ=1.</small><br />[[File:Rice_distributionb_CDF.png|325px|Rice cumulative density functions σ=0.25]]<br /><small>Rice cumulative density functions for various ''v'' with σ=0.25.</small> |parameters =<math>v\ge 0\,</math><br /><math>\sigma\ge 0\,</math> |support =<math>x\in [0;\infty)</math> |pdf =<math>\frac{x}{\sigma^2}\exp\left(\frac{-(x^2+v^2)} {2\sigma^2}\right)I_0\left(\frac{xv}{\sigma^2}\right)</math> |cdf = |mean =<math>\sigma \sqrt{\pi/2}\,\,L_{1/2}(-v^2/2\sigma^2)</math> |median = |mode = |variance =<math>2\sigma^2+v^2-\frac{\pi\sigma^2}{2}L_{1/2}^2\left(\frac{-v^2}{2\sigma^2}\right)</math> |skewness =(complicated) |kurtosis =(complicated) |entropy = |mgf = |char = }} 在[[概率论]]與[[数理統計]]领域,'''萊斯分布'''(Rice distribution或Rician distribution)是一種[[连续概率分布]],以美国科学家[[斯蒂芬·莱斯]]([[:en:Stephen O. Rice]])的名字命名,其[[概率密度函数]]为: :<math>f(x|v,\sigma)=\,</math> ::<math>\frac{x}{\sigma^2}\exp\left(\frac{-(x^2+v^2)} {2\sigma^2}\right)I_0\left(\frac{xv}{\sigma^2}\right)</math> 其中<math>I_0(z)</math>是修正的第一类零阶[[貝索函數]]([[:en:Bessel function|Bessel function]])。当<math>v=0</math>时,莱斯分布退化为[[瑞利分布]]。 == 矩 == == 极限情况 == For large values of the argument, the Laguerre polynomial becomes (See Abramowitz and Stegun [http://www.math.sfu.ca/~cbm/aands/page_508.htm §13.5.1]) :<math>\lim_{x\rightarrow -\infty}L_\nu(x)=\frac{|x|^\nu}{\Gamma(1+\nu)}</math> It is seen that as <math>v</math> becomes large or <math>\sigma</math> becomes small the mean becomes <math>v</math> and the variance becomes <math>\sigma^2</math> == 相關條目 == * [[Stephen O. Rice]] (1907-1986) * [[瑞利分布]] * [[莱斯衰落]] == 外部連結 == * Yongjun Xie and Yuguang Fang, "A General Statistical Channel Model for Mobile Satellite Systems" IEEE Transactions on Vehicular Technology, VOL. 49, NO. 3, MAY 2000. http://www.fang.ece.ufl.edu/mypaper/tvt00_xie.pdf {{概率分布类型列表}} [[Category:连续分布]]
本页使用的模板:
Template:Link style
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:概率分布类型列表
(
查看源代码
)
Template:機率分佈
(
查看源代码
)
返回
莱斯分布
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息