查看“误差函数”的源代码
←
误差函数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Erf_plot.svg|thumb|right|325px|误差函数]] 在[[数学]]中,误差函数(也称之为'''高斯误差函数''')是一个[[特殊函数]](即不是[[初等函数]]),其在[[概率论]],[[统计学]]以及[[偏微分方程]]中都有广泛的应用。它的定义如下:<ref>Andrews, Larry C.; [http://books.google.co.uk/books?id=2CAqsF-RebgC&pg=PA110#v=onepage&q&f=false ''Special functions of mathematics for engineers'']</ref><ref name="Greene">Greene, William H.; ''Econometric Analysis'' (fifth edition), Prentice-Hall, 1993, p. 926, fn. 11</ref> :<math>\operatorname{erf}(x) = \frac{1}{\sqrt\pi}\int_{-x}^x e^{-t^2} \,\mathrm{d}t=\frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}\,\mathrm dt.</math> [[File:Erfc_plot.svg|thumb|right|325px|互补误差函数]] '''互补误差函数''',记为 erfc,在误差函数的基础上定义: :<math>\mbox{erfc}(x) = 1-\mbox{erf}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,\mathrm dt\,.</math> '''虚误差函数''',记为 ''erfi'',定义为: :<math>\operatorname{erfi}(z) = -i\,\,\operatorname{erf}(i\,z).</math> '''複誤差函數''',记为''w''(''z''),也在误差函数的基础上定义: :<math>w(z) = e^{-z^2}{\textrm{erfc}}(-iz).</math> ==名称由来== 误差函数来自[[测度论]],后来与测量误差无关的其他领域也用到这一函数,但仍然使用误差函数这一名字。 误差函数与标准[[正态分布]]的积分[[累积分布函数]]<math>\Phi</math>的关系为<ref name="Greene" /> :<math>\Phi (x) = \frac{1}{2}+ \frac{1}{2} \operatorname{erf} \left(\frac{x}{\sqrt{2}}\right).</math> ==性质== {{multiple image | header = 复平面上的图 | direction = vertical | width = 250 | image1 = ComplexEx2.jpg | caption1 = Integrand exp(−''z''<sup>2</sup>) | image2 = ComplexErf.jpg | caption2 = erf(''z'') }} 误差函数是[[奇函数与偶函数|奇函数]]: :<math>\operatorname{erf} (-z) = -\operatorname{erf} (z)</math> 对于任何 [[复数]] ''z'': :<math>\operatorname{erf} (\overline{z}) = \overline{\operatorname{erf}(z)} </math> 其中 <math>\overline{z}</math> 表示 ''z''的 [[复共轭]]。 复平面上,函数 ''ƒ'' = exp(−''z''<sup>2</sup>) 和 ''ƒ'' = erf(''z'') 如图所示。粗绿线表示 Im(''ƒ'') = 0,粗红线表示 Im(''ƒ'') < 0, 粗蓝线为 Im(''ƒ'') > 0。细绿线表示 Im(''ƒ'') = constant,细红线表示 Re(''ƒ'') = constant<0,细蓝线表示 Re(''ƒ'') = constant>0。 <!-- Level of Im(''ƒ'') = 0 is shown with a thick green line. Negative integer values of Im(''ƒ'') are shown with thick red lines. Positive integer values of Im(''f'') are shown with thick blue lines. Intermediate levels of Im(''ƒ'') = constant are shown with thin green lines. Intermediate levels of Re(''ƒ'') = constant are shown with thin red lines for negative values and with thin blue lines for positive values. the relation <math>{\rm erf}(-z)=-{\rm erf}(z)</math> holds.!--> 在实轴上, ''z'' → ∞时,erf(''z'') 趋于1,''z'' → −∞时,erf(''z'') 趋于−1 。在虚轴上, erf(''z'') 趋于 ±i∞。 ===泰勒级数=== 误差函数是[[整函数]],没有奇点(无穷远处除外),泰勒展开收敛。 误差函数泰勒级数: :<math>\operatorname{erf}(z)= \frac{2}{\sqrt{\pi}}\sum_{n=0}^\infin\frac{(-1)^n z^{2n+1}}{n! (2n+1)} =\frac{2}{\sqrt{\pi}} \left(z-\frac{z^3}{3}+\frac{z^5}{10}-\frac{z^7}{42}+\frac{z^9}{216}-\ \cdots\right)</math> 对每个复数 ''z''均成立。 上式可以用迭代形式表示: :<math>\operatorname{erf}(z)= \frac{2}{\sqrt{\pi}}\sum_{n=0}^\infin\left(z \prod_{k=1}^n {\frac{-(2k-1) z^2}{k (2k+1)}}\right) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^\infin \frac{z}{2n+1} \prod_{k=1}^n \frac{-z^2}{k}</math> 误差函数的[[导数]]: :<math>\frac{\rm d}{{\rm d}z}\,\mathrm{erf}(z)=\frac{2}{\sqrt{\pi}}\,e^{-z^2}.</math> 误差函数的 [[不定积分]]为: :<math>z\,\operatorname{erf}(z) + \frac{e^{-z^2}}{\sqrt{\pi}}</math> ===逆函数=== [[File:Inverse Error function.png|thumb|逆誤差函數]] '''逆误差函数''' 可由 [[麦克劳林级数]]表示: :<math>\operatorname{erf}^{-1}(z)=\sum_{k=0}^\infin\frac{c_k}{2k+1}\left (\frac{\sqrt{\pi}}{2}z\right )^{2k+1}, \,\!</math> 其中, ''c''<sub>0</sub> = 1 , :<math>c_k=\sum_{m=0}^{k-1}\frac{c_m c_{k-1-m}}{(m+1)(2m+1)} = \left\{1,1,\frac{7}{6},\frac{127}{90},\frac{4369}{2520},\ldots\right\}.</math> 即: :<math>\operatorname{erf}^{-1}(z)=\tfrac{1}{2}\sqrt{\pi}\left (z+\frac{\pi}{12}z^3+\frac{7\pi^2}{480}z^5+\frac{127\pi^3}{40320}z^7+\frac{4369\pi^4}{5806080}z^9+\frac{34807\pi^5}{182476800}z^{11}+\cdots\right ).\ </math> '''逆互补误差函数'''定义为: :<math>\operatorname{erfc}^{-1}(1-z) = \operatorname{erf}^{-1}(z).</math> ===渐近展开=== 互补误差函数的[[渐近展开]], :<math>\mathrm{erfc}(x) = \frac{e^{-x^2}}{x\sqrt{\pi}}\left [1+\sum_{n=1}^\infty (-1)^n \frac{1\cdot3\cdot5\cdots(2n-1)}{(2x^2)^n}\right ]=\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2x^2)^n},\,</math> 其中 (2''n'' – 1)!! 为 [[双阶乘]],''x''为实数,该级数对有限 ''x''发散。对于<math>N\in\N</math> ,有 :<math>\mathrm{erfc}(x) = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^{N-1} (-1)^n \frac{(2n-1)!!}{(2x^2)^n}+ R_N(x) \,</math> 其中余项用以 [[大O符号]]表示为 :<math>R_N(x)=O(x^{-2N+1} e^{-x^2})</math> as <math>x\to\infty</math>. 余项的精确形式为: :<math>R_N(x):= \frac{(-1)^N}{\sqrt{\pi}}2^{-2N+1}\frac{(2N)!}{N!}\int_x^\infty t^{-2N}e^{-t^2}\,\mathrm dt, </math> 对于比较大的 x, 只需渐近展开中开始的几项就可以得到 erfc(''x'')很好的近似值。(对于不太大的 ''x'' ,上文泰勒展开在0处可以快速收敛。)。 ===连分式展开=== 互补误差函数的连分式展开形式:<ref>{{cite book | last1 = Cuyt | first1 = Annie A. M. | last2 = Petersen | first2 = Vigdis B. | last3 = Verdonk | first3 = Brigitte | last4 = Waadeland | first4 = Haakon | last5 = Jones | first5 = William B. | title = Handbook of Continued Fractions for Special Functions | publisher = [[Springer-Verlag]] | year = 2008 | isbn = 978-1-4020-6948-2 }}</ref> : <math>\mathrm{erfc}(z) = \frac{z}{\sqrt{\pi}}e^{-z^2} \cfrac{a_1}{z^2+ \cfrac{a_2}{1+ \cfrac{a_3}{z^2+ \cfrac{a_4}{1+\dotsb}}}} \qquad a_1 = 1,\quad a_m = \frac{m-1}{2},\quad m \geq 2. </math> ==初等函数近似表达式== * : <math>\operatorname{erf}(x)\approx 1-\frac{1}{(1+a_1x+a_2x^2+a_3x^3+a_4x^4)^4}</math> (最大误差: 5·10<sup>−4</sup>) 其中, ''a''<sub>1</sub> = 0.278393, ''a''<sub>2</sub> = 0.230389, ''a''<sub>3</sub> = 0.000972, ''a''<sub>4</sub> = 0.078108 * : <math>\operatorname{erf}(x)\approx 1-(a_1t+a_2t^2+a_3t^3)e^{-x^2},\quad t=\frac{1}{1+px}</math> (最大误差:2.5·10<sup>−5</sup>) 其中, ''p'' = 0.47047, ''a''<sub>1</sub> = 0.3480242, ''a''<sub>2</sub> = −0.0958798, ''a''<sub>3</sub> = 0.7478556 * : <math>\operatorname{erf}(x)\approx 1-\frac{1}{(1+a_1x+a_2x^2+\cdots+a_6x^6)^{16}}</math> (最大误差: 3·10<sup>−7</sup>) 其中, ''a''<sub>1</sub> = 0.0705230784, ''a''<sub>2</sub> = 0.0422820123, ''a''<sub>3</sub> = 0.0092705272, ''a''<sub>4</sub> = 0.0001520143, ''a''<sub>5</sub> = 0.0002765672, ''a''<sub>6</sub> = 0.0000430638 * : <math>\operatorname{erf}(x)\approx 1-(a_1t+a_2t^2+\cdots+a_5t^5)e^{-x^2},\quad t=\frac{1}{1+px}</math> (maximum error: 1.5·10<sup>−7</sup>) 其中, ''p'' = 0.3275911, ''a''<sub>1</sub> = 0.254829592, ''a''<sub>2</sub> = −0.284496736, ''a''<sub>3</sub> = 1.421413741, ''a''<sub>4</sub> = −1.453152027, ''a''<sub>5</sub> = 1.061405429 以上所有近似式适用范围是: ''x'' ≥ 0. 对于负的 ''x'', 误差函数是奇函数这一性质得到误差函数的值, erf(''x'') = −erf(−''x''). 另有近似式: : <math>\operatorname{erf}(x)\approx \sgn(x) \sqrt{1-\exp\left(-x^2\frac{4/\pi+ax^2}{1+ax^2}\right)}</math> 其中, : <math>a = \frac{8(\pi-3)}{3\pi(4-\pi)} \approx 0.140012.</math> <!-- The range of approximation and the precision are not reported; the fitting may take place in vicinity of the real axis. --> 该近似式在0或无穷的邻域非常准确,''x''整个定义域上,近似式最大误差小于0.00035,取 ''a'' ≈ 0.147 ,最大误差可减小到0.00012。<ref>{{Cite web |last=Winitzki |first=Sergei |date=6 February 2008 |title=A handy approximation for the error function and its inverse |url=http://sites.google.com/site/winitzki/sergei-winitzkis-files/erf-approx.pdf |format=PDF |accessdate=2011-10-03 }}{{Dead link|date=2019年5月 |bot=InternetArchiveBot |fix-attempted=yes }}</ref><!-- Note: a=0.14784 gives a maximum error of ~.000104, better than a = 0.147 --> 逆误差函数近似式: :<math>\operatorname{erf}^{-1}(x)\approx \sgn(x) \sqrt{\sqrt{\left(\frac{2}{\pi a}+\frac{\ln(1-x^2)}{2}\right)^2 - \frac{\ln(1-x^2)}{a}} -\left(\frac{2}{\pi a}+\frac{\ln(1-x^2)}{2}\right)}.</math> == 数值近似 == 下式在整个定义域上,最大误差可低至 <math>1.2\cdot10^{-7}</math>:<ref>Numerical Recipes in Fortran 77: The Art of Scientific Computing (ISBN 978-0-521-43064-7), 1992, page 214, Cambridge University Press.</ref> :<math>\operatorname{erf}(x)=\begin{cases} 1-\tau & \mathrm{for\;}x\ge 0\\ \tau-1 & \mathrm{for\;}x < 0 \end{cases}</math> 其中, :<math>\begin{array}{rcl} \tau & = & t\cdot\exp\left(-x^{2}-1.26551223+1.00002368\cdot t+0.37409196\cdot t^{2}+0.09678418\cdot t^{3}\right.\\ & & \qquad-0.18628806\cdot t^{4}+0.27886807\cdot t^{5}-1.13520398\cdot t^{6}+1.48851587\cdot t^7\\ & & \qquad\left.-0.82215223\cdot t^{8}+0.17087277\cdot t^{9}\right) \end{array}</math> :<math>t=\frac{1}{1+0.5\,|x|}</math> ==与其他函数的关系== 误差函数本质上与标准正态[[累积分布函数]]<math>\Phi</math>是等价的, : <math>\Phi(x) =\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^\tfrac{-t^2}{2}\,\mathrm dt = \frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right]=\frac{1}{2}\,\operatorname{erfc}\left(-\frac{x}{\sqrt{2}}\right)</math> 可整理为如下形式: :<math>\begin{align} \mathrm{erf}(x) &= 2 \Phi \left ( x \sqrt{2} \right ) - 1 \\ \mathrm{erfc}(x) &= 2 \Phi \left ( - x \sqrt{2} \right )=2\left(1-\Phi \left ( x \sqrt{2} \right)\right). \end{align}</math> <math>\Phi</math>的逆函数为正态{{link-en|分位函数|Quantile function}},即{{link-en|概率单位|Probit}}函数, :<math> \operatorname{probit}(p) = \Phi^{-1}(p) = \sqrt{2}\,\operatorname{erf}^{-1}(2p-1) = -\sqrt{2}\,\operatorname{erfc}^{-1}(2p). </math> 误差函数为标准正态分布的尾概率{{link-en|Q函数|Q-function}}的关系为, :<math> Q(x) =\frac{1}{2} - \frac{1}{2} \operatorname{erf} \left( \frac{x}{\sqrt{2}} \right)=\frac{1}{2}\operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right). </math> 误差函数是[[米塔-列夫勒函数]]的特例,可以表示为[[合流超几何函数]], :<math>\mathrm{erf}(x)= \frac{2x}{\sqrt{\pi}}\,_1F_1\left(\tfrac12,\tfrac32,-x^2\right).</math> 误差函数用正则[[Γ函数]]P和 [[不完全Γ函数]]表示为 :<math>\operatorname{erf}(x)=\operatorname{sgn}(x) P\left(\tfrac12, x^2\right)={\operatorname{sgn}(x) \over \sqrt{\pi}}\gamma\left(\tfrac12, x^2\right).</math> <math>\scriptstyle\operatorname{sgn}(x) \ </math> 为 [[符号函数]]. ===广义误差函数=== [[File:Error Function Generalised.svg|right|thumb|400px|广义误差函数图像 ''E''<sub>n</sub>(''x''):<br /> 灰线: ''E''<sub>1</sub>(''x'') = (1 − e<sup> −''x''</sup>)/<math>\scriptstyle\sqrt{\pi}</math><br /> 红线: ''E''<sub>2</sub>(''x'') = erf(''x'')<br /> 绿线: ''E''<sub>3</sub>(''x'')<br /> 蓝线: ''E''<sub>4</sub>(''x'')<br /> 金线: ''E''<sub>5</sub>(''x'').]] 广义误差函数为: :<math>E_n(x) = \frac{n!}{\sqrt{\pi}} \int_0^x e^{-t^n}\,\mathrm dt =\frac{n!}{\sqrt{\pi}}\sum_{p=0}^\infin(-1)^p\frac{x^{np+1}}{(np+1)p!}\,.</math> 其中,''E''<sub>0</sub>(''x'')为通过原点的直线, <math>\scriptstyle E_0(x)=\frac{x}{e \sqrt{\pi}}</math>。''E''<sub>2</sub>(''x'') 即为误差函数 erf(''x'')。 ''x'' > 0时,广义误差函数可以用Γ函数和 不完全Γ函数表示, :<math>E_n(x) = \frac{\Gamma(n)\left(\Gamma\left(\frac{1}{n}\right)-\Gamma\left(\frac{1}{n},x^n\right)\right)}{\sqrt\pi}, \quad \quad x>0.\ </math> 因此,误差函数可以用不完全Γ函数表示为: :<math>\operatorname{erf}(x) = 1 - \frac{\Gamma\left(\frac{1}{2},x^2\right)}{\sqrt\pi}.\ </math> ===互补误差函数的迭代积分=== 互补误差函数的迭代积分定义为: :<math> \mathrm i^n \operatorname{erfc}\, (z) = \int_z^\infty \mathrm i^{n-1} \operatorname{erfc}\, (\zeta)\;\mathrm d \zeta.\, </math> 可以展开成幂级数: :<math> \mathrm i^n \operatorname{erfc}\, (z) = \sum_{j=0}^\infty \frac{(-z)^j}{2^{n-j}j! \Gamma \left( 1 + \frac{n-j}{2}\right)}\,, </math> 满足如下对称性质: :<math> \mathrm i^{2m} \operatorname{erfc} (-z) = - \mathrm i^{2m} \operatorname{erfc}\, (z) + \sum_{q=0}^m \frac{z^{2q}}{2^{2(m-q)-1}(2q)! (m-q)!} </math> 和 :<math> \mathrm i^{2m+1} \operatorname{erfc} (-z) = \mathrm i^{2m+1} \operatorname{erfc}\, (z) + \sum_{q=0}^m \frac{z^{2q+1}}{2^{2(m-q)-1}(2q+1)! (m-q)!}\,. </math> ==函数表== {{Col-begin}} {{Col-2}} :{| class="wikitable" |--class="hintergrundfarbe6" !x !erf(x) !erfc(x) |rowspan=24 style="width:2px;background-color:#000000;padding:0px;"| !x !erf(x) !erfc(x) |- |0.00 |0.0000000 |1.0000000 |1.30 |0.9340079 |0.0659921 |- |0.05 |0.0563720 |0.9436280 |1.40 |0.9522851 |0.0477149 |- |0.10 |0.1124629 |0.8875371 |1.50 |0.9661051 |0.0338949 |- |0.15 |0.1679960 |0.8320040 |1.60 |0.9763484 |0.0236516 |- |0.20 |0.2227026 |0.7772974 |1.70 |0.9837905 |0.0162095 |- |0.25 |0.2763264 |0.7236736 |1.80 |0.9890905 |0.0109095 |- |0.30 |0.3286268 |0.6713732 |1.90 |0.9927904 |0.0072096 |- |0.35 |0.3793821 |0.6206179 |2.00 |0.9953223 |0.0046777 |- |0.40 |0.4283924 |0.5716076 |2.10 |0.9970205 |0.0029795 |- |0.45 |0.4754817 |0.5245183 |2.20 |0.9981372 |0.0018628 |- |0.50 |0.5204999 |0.4795001 |2.30 |0.9988568 |0.0011432 |- |0.55 |0.5633234 |0.4366766 |2.40 |0.9993115 |0.0006885 |- |0.60 |0.6038561 |0.3961439 |2.50 |0.9995930 |0.0004070 |- |0.65 |0.6420293 |0.3579707 |2.60 |0.9997640 |0.0002360 |- |0.70 |0.6778012 |0.3221988 |2.70 |0.9998657 |0.0001343 |- |0.75 |0.7111556 |0.2888444 |2.80 |0.9999250 |0.0000750 |- |0.80 |0.7421010 |0.2578990 |2.90 |0.9999589 |0.0000411 |- |0.85 |0.7706681 |0.2293319 |3.00 |0.9999779 |0.0000221 |- |0.90 |0.7969082 |0.2030918 |3.10 |0.9999884 |0.0000116 |- |0.95 |0.8208908 |0.1791092 |3.20 |0.9999940 |0.0000060 |- |1.00 |0.8427008 |0.1572992 |3.30 |0.9999969 |0.0000031 |- |1.10 |0.8802051 |0.1197949 |3.40 |0.9999985 |0.0000015 |- |1.20 |0.9103140 |0.0896860 |3.50 |0.9999993 |0.0000007 |} {{Col-2}} :{| class="wikitable" |--class="hintergrundfarbe6" !x !erfc(x)/2 |- |1 |7.86496e−2 |- |2 |2.33887e−3 |- |3 |1.10452e−5 |- |4 |7.70863e−9 |- |5 |7.6873e−13 |- |6 |1.07599e−17 |- |7 |2.09191e−23 |- |8 |5.61215e−30 |- |9 |2.06852e−37 |- |10 |1.04424e−45 |- |11 |7.20433e−55 |- |12 |6.78131e−65 |- |13 |8.69779e−76 |- |14 |1.51861e−87 |- |15 |3.6065e−100 |- |16 |1.16424e−113 |- |17 |5.10614e−128 |- |18 |3.04118e−143 |- |19 |2.45886e−159 |- |20 |2.69793e−176 |- |21 |4.01623e−194 |- |22 |8.10953e−213 |- |23 |2.22063e−232 |- |24 |8.24491e−253 |- |25 |4.15009e−274 |- |26 |2.8316e−296 |- |27 |2.61855e−319 |} {{Col-end}} ==参见== *[[古德温 - 斯塔顿积分]] ==参考文献== {{reflist}} ==外部链接== * [http://mathworld.wolfram.com/Erf.html MathWorld – Erf] {{Authority control}} [[Category:特殊函数|E]] [[Category:特殊超几何函数|E]]
本页使用的模板:
Template:Authority control
(
查看源代码
)
Template:Cite book
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Col-2
(
查看源代码
)
Template:Col-begin
(
查看源代码
)
Template:Col-end
(
查看源代码
)
Template:Dead link
(
查看源代码
)
Template:Link-en
(
查看源代码
)
Template:Multiple image
(
查看源代码
)
Template:Reflist
(
查看源代码
)
返回
误差函数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息