查看“贝塞尔不等式”的源代码
←
贝塞尔不等式
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
在[[数学]]里的[[泛函分析]]中,'''贝塞尔不等式'''是类似于[[勾股定理]]的一种[[不等式]]。贝塞尔不等式揭示了[[希尔伯特空间]]中的一个元素和它在一个[[正交]][[序列]]上的投影之间的关系。举例来说,[[平面 (数学)|平面]]上的一个[[向量]]的[[长度]]的[[平方]]等于它在两个相互垂直的[[坐标轴]]上的投影的平方和,而对于一个三维空间上的向量,它在两个相互垂直的[[坐标轴]]上的投影的平方和一般会小于它自身的长度的平方,除非它就在这两个坐标轴构成的平面上。对于一个希尔伯特空间中的向量来说,它在任意一个正交序列上的投影的平方和也是小于等于它自身的长度的平方。这就是贝塞尔不等式。贝塞尔不等式的等号成立[[当且仅当]]正交序列是完全序列。这时贝塞尔不等式转化为'''[[帕塞瓦尔定理]]'''。 == 定理的叙述 == 设<math>\mathcal{H}</math> 是一个装备了[[内积]]:<math> \left \langle \cdot , \cdot \right \rangle</math> 的[[希尔伯特空间]]。考虑一组[[正交|规范正交]][[向量]]的[[序列]]:<math>(e_1, e_2, \cdots , e_n, \cdots)</math>。那么,对于任意一个<math>\mathcal{H}</math> 中的元素,都有: <center><math>\sum_{k} \left| \left \langle x , e_k \right \rangle \right|^2 \le \left \| x \right \|^2</math></center> 其中的系数<math>\left \langle x , e_k \right \rangle</math> 是''x'' 在一个正交向量序列中元素<math>e_k</math> 上的投影的长度。 == 例子 == === 例一:平面直角坐标系 === [[File:CoordXY.PNG|thumb|right|210px|平面上的向量满足勾股定理。]] 在平面上,假定已经存在一个由相互垂直的向量构成的直角坐标系。根据勾股定理,一个向量的长度的平方<math>r^2</math> 等于它在''X'' 轴的投影的长度的平方(<math>x^2</math>) 加上它在''Y'' 轴的投影的长度的平方(<math>y^2</math>),如右图。 [[File:CoordsXYZ.JPG|thumb|left|200px|]] 实际上,整个平面上的每一个向量都可以由这两个相互垂直的单位向量的有限线性组合表示。这样的一组相互垂直的向量被称为是这个平面里的一组'''完全规范正交向量''':每个向量都可以被这一组向量的有限线性组合作任意程度的逼近(事实上是等于)。 === 例二:三维空间中的平面投影 === 当向量是在三维[[欧几里得空间]]中时,对于一个平面(比如说xOy平面)以及平面上的一个由相互垂直的向量(Ox 方向上的<math>e_x</math> 和Oy 方向上的<math>e_y</math>)构成的直角坐标系,向量的长度的平方会比它在''X'' 轴的投影的长度平方加上它在''Y'' 轴的投影的长度平方之和还要大。实际上,这个平方和正是向量在xOy平面上的投影的长度的平方。而原来的向量的长度的平方是这个投影长度的平方加上它在''Z'' 轴的投影的长度平方。 这个事实说明,向量<math>e_x</math> 和<math>e_y</math> 不是三维欧几里得空间里的一组完全正交向量。 == 证明 == 证明的思路是利用一般希尔伯特空间中的“[[勾股定理]]”:如果两个向量垂直,那么它们的和的长度平方等于它们两个的长度的平方和。首先考虑规范正交向量序列有限时的情形:设序列的长度是''n'',序列中的元素是: :<math>(e_1, e_2, \cdots , e_n)</math> 设一个向量''x'' 在这个规范正交序列上的投影为向量:<math>p(x) = \sum_{k=1}^n \langle x, e_k \rangle e_k</math>,而''x'' 与它的投影的差则是向量:<math>z(x)= x - p(x) = x - \sum_{k=1}^n \langle x, e_k \rangle e_k</math>。这两个向量的[[内积]]等于: :<math>\langle p(x) , z(x) \rangle = \langle \sum_{k=1}^n \langle x, e_k \rangle e_k , x - \sum_{k=1}^n \langle x, e_k \rangle e_k \rangle = \sum_{k=1}^n (\langle x, e_k \rangle \langle e_k, x \rangle ) - \sum_{k=1}^n \sum_{l=1}^n \langle x, e_k \rangle \overline{\langle x, e_l \rangle } \langle e_k, e_l \rangle</math> :<math>= \sum_{k=1}^n | \langle x, e_k \rangle |^2 - \sum_{k=1}^n | \langle x, e_k \rangle |^2 \langle e_k, e_k \rangle = \sum_{k=1}^n | \langle x, e_k \rangle |^2 - \sum_{k=1}^n | \langle x, e_k \rangle |^2 = 0</math> 也就是说,''x'' 在这个规范正交序列上的投影垂直于''x'' 与它的投影的差。所以根据勾股定理,有: :<math>\left\|x \right\|^2 = \left\|p(x) \right\|^2 + \left\|z(x) \right\|^2 \ge \left\|p(x) \right\|^2 = \sum_{k=1}^n | \langle x, e_k \rangle |^2 \langle e_k, e_k \rangle = \sum_{k=1}^n | \langle x, e_k \rangle |^2 </math> 即使规范正交向量序列是无限的,只要它是[[可列集|可数的]],就会有相同的不等式。实际上,只需要考虑这个无穷(可数个)序列中的前面''n'' 项。根据有限序列时的情形,可以证明一个元素''x'' 在规范正交向量序列的前''n'' 项上的投影的长度平方和<math>\sum_{k=1}^n | \langle x, e_k \rangle |^2 </math>小于等于''x'' 的长度平方。这个平方和实际上是正项[[无穷级数]]<math>\sum_{k} | \langle x, e_k \rangle |^2 </math>的前''n'' 项部分和,所以这个无穷级数收敛,并且其极限<math>\sum_{k=1}^{\infty} | \langle x, e_k \rangle |^2 </math>也小于等于''x'' 的长度平方。换句话说,向量序列<math>p_n (x) = \sum_{k=1}^n \langle x, e_k \rangle e_k</math> 在<math>\mathcal{H}</math> 上收敛。 == 参见 == * [[闵可夫斯基空间]] * [[柯西不等式]] * [[三角不等式]] * [[完备空间]] == 参考来源 == * {{cite book |title = 《数学分析(第二卷)(第4版)》 |author = B.A.卓里奇 著,蒋铎 钱佩玲 周美珂 邝荣雨 译 |publisher = 高等教育出版社 |year = 2006 |ISBN= 978-7-04-020257-1 }} * {{cite book |title =Introduction to Hilbert space and the theory of spectral multiplicity |author = P. R. Halmos |publisher = Chelsea Pub Co; 2 edition |year = August 1998 |ISBN= 978-0-82-181378-2 }} {{泛函分析}} [[Category:希尔伯特空间]] [[Category:泛函分析]] [[Category:不等式]]
本页使用的模板:
Template:Cite book
(
查看源代码
)
Template:泛函分析
(
查看源代码
)
返回
贝塞尔不等式
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息