查看“F-分布”的源代码
←
F-分布
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{noteTA |G1=Math }} {{機率分佈 |name = F分布 |type = 密度 |pdf_image = [[Image:F-distribution pdf.svg|325px]]| |cdf_image = [[Image:F_dist_cdf.svg|325px]]| |parameters =<math>d_1>0,\ d_2>0</math>自由度 |support = <math>x \in [0; +\infty)\!</math> |pdf = <math>\frac{\sqrt{\frac{(d_1\,x)^{d_1}\,\,d_2^{d_2}} {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)}\!</math> |cdf = <math>I_{\frac{d_1 x}{d_1 x + d_2}}(d_1/2, d_2/2)\!</math> |mean = <math>\frac{d_2}{d_2-2}\!</math> for <math>d_2 > 2</math> |median = |mode = <math>\frac{d_1-2}{d_1}\;\frac{d_2}{d_2+2}\!</math> for <math>d_1 > 2</math> |variance = <math>\frac{2\,d_2^2\,(d_1+d_2-2)}{d_1 (d_2-2)^2 (d_2-4)}\!</math> for <math>d_2 > 4</math> |skewness = <math>\frac{(2 d_1 + d_2 - 2) \sqrt{8 (d_2-4)}}{(d_2-6) \sqrt{d_1 (d_1 + d_2 -2)}}\!</math><br />for <math>d_2 > 6</math> |kurtosis = ''见下文'' |entropy = |mgf = |char = }} 在[[概率论]]和[[统计学]]里,'''''F''-分布'''(''F''-distribution)是一种[[概率分布|连续概率分布]],<ref name=johnson>{{cite book | last = Johnson | first = Norman Lloyd |author2=Samuel Kotz |author3=N. Balakrishnan | title = Continuous Univariate Distributions, Volume 2 (Second Edition, Section 27) | publisher = Wiley | year = 1995 | isbn = 0-471-58494-0}}</ref><ref name=abramowitz>{{Abramowitz_Stegun_ref|26|946}}</ref><ref>NIST (2006). [http://www.itl.nist.gov/div898/handbook/eda/section3/eda3665.htm Engineering Statistics Handbook – F Distribution]</ref><ref>{{cite book | last = Mood | first = Alexander |author2=Franklin A. Graybill |author3=Duane C. Boes | title = Introduction to the Theory of Statistics (Third Edition, pp. 246–249) | publisher = McGraw-Hill | year = 1974 | isbn = 0-07-042864-6}}</ref>被广泛应用于[[似然比率检验]],特别是[[方差分析|ANOVA]]中。 == 定义 == 如果[[随机变量]] ''X'' 有参数为 ''d''<sub>1</sub> 和 ''d''<sub>2</sub> 的 ''F''-分布,我们写作 ''X'' ~ F(''d''<sub>1</sub>, ''d''<sub>2</sub>)。那么对于实数 ''x'' ≥ 0,''X'' 的[[概率密度函数]] (pdf)是 :<math> \begin{align} f(x; d_1,d_2) &= \frac{\sqrt{\frac{(d_1\,x)^{d_1}\,\,d_2^{d_2}} {(d_1\,x+d_2)^{d_1+d_2}}}} {x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \\ &=\frac{1}{\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2} - 1} \left(1+\frac{d_1}{d_2}\,x\right)^{-\frac{d_1+d_2}{2}} \end{align} </math> 这里<math>\mathrm{B}</math>是[[B函数]]。在很多应用中,参数 ''d''<sub>1</sub> 和 ''d''<sub>2</sub> 是[[正整数]],但对于这些参数为正实数时也有定义。 [[累积分布函数]]为 :<math>F(x; d_1,d_2)=I_{\frac{d_1 x}{d_1 x + d_2}}\left (\tfrac{d_1}{2}, \tfrac{d_2}{2} \right) ,</math> 其中 ''I'' 是[[B函数#不完全贝塔函数|正则不完全贝塔函数]]。 右边表格中已给出[[期望值]]、[[方差]]和[[偏度]];对于<math>d_2>8</math>,[[峰度]]为: :<math>\gamma_2 = 12\frac{d_1(5d_2-22)(d_1+d_2-2)+(d_2-4)(d_2-2)^2}{d_1(d_2-6)(d_2-8)(d_1+d_2-2)}</math>. <!-- The ''k''-th moment of an F(''d''<sub>1</sub>, ''d''<sub>2</sub>) distribution exists and is finite only when 2''k'' < ''d''<sub>2</sub> and it is equal to <ref name=taboga>{{cite web | last1 = Taboga | first1 = Marco | url = http://www.statlect.com/F_distribution.htm | title = The F distribution}}</ref> :<math>\mu _{X}(k) =\left( \frac{d_{2}}{d_{1}}\right)^{k}\frac{\Gamma \left(\tfrac{d_1}{2}+k\right) }{\Gamma \left(\tfrac{d_1}{2}\right) }\frac{\Gamma \left(\tfrac{d_2}{2}-k\right) }{\Gamma \left( \tfrac{d_2}{2}\right) }</math> The ''F''-distribution is a particular parametrization of the [[beta prime distribution]], which is also called the beta distribution of the second kind. The [[Characteristic function (probability theory)|characteristic function]] is listed incorrectly in many standard references (e.g., <ref name=abramowitz />). The correct expression <ref>Phillips, P. C. B. (1982) "The true characteristic function of the F distribution," ''[[Biometrika]]'', 69: 261–264 {{jstor|2335882}}</ref> is :<math>\varphi^F_{d_1, d_2}(s) = \frac{\Gamma(\frac{d_1+d_2}{2})}{\Gamma(\tfrac{d_2}{2})} U \! \left(\frac{d_1}{2},1-\frac{d_2}{2},-\frac{d_2}{d_1} \imath s \right)</math> where ''U''(''a'', ''b'', ''z'') is the [[confluent hypergeometric function]] of the second kind.--> == 特征 == 一个''F''-分布的[[随机变量]]是两个[[卡方分佈]]变量除以自由度的比率: :<math> \frac{U_1/d_1}{U_2/d_2} = \frac{U_1/U_2}{d_1/d_2} </math> 其中: * ''U''<sub>''1''</sub>和''U''<sub>2</sub>呈[[卡方分佈]],它们的[[自由度 (统计学)|自由度]](degree of freedom)分别是''d''<sub>''1''</sub>和''d''<sub>2</sub>。 * ''U''<sub>1</sub>和''U''<sub>2</sub>是相互独立的。 == 参考文献 == {{reflist}} {{概率分布类型列表}} [[Category:统计学]] [[Category:连续分布]]
本页使用的模板:
Template:Abramowitz Stegun ref
(
查看源代码
)
Template:Cite book
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:概率分布类型列表
(
查看源代码
)
Template:機率分佈
(
查看源代码
)
返回
F-分布
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息