查看“Tanhc函数”的源代码
←
Tanhc函数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑本页:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''Tanhc'''函数定义如下<ref>Weisstein, Eric W. "Tanhc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/TanhcFunction.html </ref> [[File:Tanhc 2D plot.png|thumb|Tanhc 2D plot]] [[File:Tanhc'(z) 2D plot.png|thumb|Tanhc'(z) 2D ]] [[File:Tanhc integral 2D plot.png|thumb|Tanhc 积分图]] [[File:Tanhc integral 3D plot.png|thumb|Tanhc integral 3D plot]] *<math> tanhc(z)={\frac {\tanh \left( z \right) }{z}} </math> ;复域虚部 *<math> {\it Im} \left( {\frac {\tanh \left( x+iy \right) }{x+iy}} \right) </math> ;复域实部 *<math>{\it Re} \left( {\frac {\tanh \left( x+iy \right) }{x+iy}} \right) </math> ;复域绝对值 *<math> \left| {\frac {\tanh \left( x+iy \right) }{x+iy}} \right| </math> ;一阶微商 *<math>{\frac {1- \left( \tanh \left( z \right) \right) ^{2}}{z}}-{\frac { \tanh \left( z \right) }{{z}^{2}}} </math> ;微商实部 *<math> -{\it Re} \left( -{\frac {1- \left( \tanh \left( x+iy \right) \right) ^{2}}{x+iy}}+{\frac {\tanh \left( x+iy \right) }{ \left( x+iy \right) ^{2}}} \right) </math> ;微商虚部 *<math>-{\it Im} \left( -{\frac {1- \left( \tanh \left( x+iy \right) \right) ^{2}}{x+iy}}+{\frac {\tanh \left( x+iy \right) }{ \left( x+iy \right) ^{2}}} \right) </math> ;微商绝对值 *<math> \left| -{\frac {1- \left( \tanh \left( x+iy \right) \right) ^{2}}{x+ iy}}+{\frac {\tanh \left( x+iy \right) }{ \left( x+iy \right) ^{2}}} \right| </math> ;积分函数 <math>\int _{0}^{z}\!{\frac {\tanh \left( x \right) }{x}}{dx}</math> ==用其他特殊函数表示== *<math>tanhc(z)=2\,{\frac {{{\rm KummerM}\left(1,\,2,\,2\,z\right)}}{ \left( 2\,iz+\pi \right) {{\rm KummerM}\left(1,\,2,\,i\pi -2\,z\right)}{{\rm e}^{2\,z-1/2\,i\pi }}}}</math> *<math>tanhc(z)=2\,{\frac {{\it HeunB} \left( 2,0,0,0,\sqrt {2}\sqrt {z} \right) }{ \left( 2\,iz+\pi \right) {\it HeunB} \left( 2,0,0,0,\sqrt {2}\sqrt { 1/2\,i\pi -z} \right) {{\rm e}^{2\,z-1/2\,i\pi }}}}</math> *<math>tanhc(z)={\frac {i{{\rm \ WhittakerM}\left(0,\,1/2,\,2\,z\right)}}{ {{\rm WhittakerM}\left(0,\,1/2,\,i\pi -2\,z\right)}z}}</math> *<math>tanhc(z)={\frac {i \left( {{\rm e}^{2\,z}}-1 \right) }{ \left( {{\rm e}^{i\pi - 2\,z}}-1 \right) {{\rm e}^{2\,z-1/2\,i\pi }}z}}</math> ==级数展开== <math>tanhc \approx (1-{\frac {1}{3}}{z}^{2}+{\frac {2}{15}}{z}^{4}-{\frac {17}{315}}{z}^{ 6}+{\frac {62}{2835}}{z}^{8}-{\frac {1382}{155925}}{z}^{10}+{\frac { 21844}{6081075}}{z}^{12}-{\frac {929569}{638512875}}{z}^{14}+O \left( {z}^{16} \right) )</math> <math>\int _{0}^{z}\!{\frac {\tanh \left( x \right) }{x}}{dx}=(z-{\frac {1}{ 9}}{z}^{3}+{\frac {2}{75}}{z}^{5}-{\frac {17}{2205}}{z}^{7}+{\frac {62 }{25515}}{z}^{9}-{\frac {1382}{1715175}}{z}^{11}+O \left( {z}^{13} \right) )</math> ==图像== {| |[[File:Tanhc abs complex 3D plot.png|thumb|Tanhc abs complex 3D]] |[[File:Tanhc Im complex 3D plot.png|thumb|Tanhc Im complex 3D plot]] |[[File:Tanhc Re complex 3D plot.png|thumb|Tanhc Re complex 3D plot]] |} {| |[[File:Tanhc'(z) Im complex 3D plot.png|thumb|Tanhc'(z) Im complex 3D plot]] |[[File:Tanhc'(z) Re complex 3D plot.png|thumb|Tanhc'(z) Re complex 3D plot]] |[[File:Tanhc'(z) abs complex 3D plot.png|thumb|Tanhc'(z) abs complex 3D plot]] | |} {| |[[File:Tanhc abs plot.JPG|thumb|Tanhc abs plot]] |[[File:Tanhc Im plot.JPG|thumb|Tanhc Im plot]] |[[File:Tanhc Re plot.JPG|thumb|Tanhc Re plot]] |} {| |[[File:Tanhc'(z) Im plot.JPG|thumb|Tanhc'(z) Im plot]] |[[File:Tanhc'(z) abs plot.JPG|thumb|Tanhc'(z) abs plot]] |[[File:Tanhc'(z) Re plot.JPG|thumb|Tanhc'(z) Re plot]] |} {| |[[File:Tanhc integral abs 3D plot.png|thumb|Tanhc integral abs 3D plot]] |[[File:Tanhc integral Im 3D plot.png|thumb|Tanhc integral Im 3D plot]] |[[File:Tanhc integral Re 3D plot.png|thumb|Tanhc integral Re 3D plot]] |} {| |[[File:Tanhc integral abs density plot.JPG|thumb|Tanhc integral abs density plot]] |[[File:Tanhc integral Im density plot.JPG|thumb|Tanhc integral Im density plot]] |[[File:Tanhc integral Re density plot.JPG|thumb|Tanhc integral Re density plot]] |} ==参看== *[[Sinhc 函数]] *[[Coshc 函数]] *[[Tanc 函数]] *[[双曲正弦积分函数]] ==参考资料== <references/> [[Category:特殊函数]]
返回
Tanhc函数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
工具
链入页面
相关更改
特殊页面
页面信息